
Introduction to Deep Learning: Assignment 1

Ioannis Koutalios (s3365530)
Daan Planken (s1838547)
Jelle Pleunes (s2443341)

October 9, 2024

Introduction

For this assignment we use different approaches (distance-based classifiers and multi-class perceptrons) for
classifying images of handwritten digits from the well-known MNIST data set 1. The training set consists
of 1707 images and the test set consists of 1000 images. Additionally, we are implementing and training a
multi-layer neural network that implements the XOR function.

Task 1: Data dimensionality, distance-based classifiers

1.1

Figure 1: The average over the training set of each of the digits

A relatively simple way to classify the digits, is to compare them to the average images of each digit in
the training set, and pick whichever is closest. Here ‘close’ and ‘average’ refer to the images when viewed as
256-dimensional vectors. The first step is then to calculate the average image of each of the digits, which can
be seen in Figure 1.

Next, in order to get a feel for the effectiveness of this classifier, we plot the distances between each of the
averages, resulting in the table seen in Figure 2.

[0 . 0 14 .4 9 .3 9 .1 10 .8 7 .5 8 .2 11 .9 9 .9 1 1 . 5]
[0 . 0 0 . 0 10 .1 11 .7 10 .2 11 .1 10 .6 10 .7 10 .1 9 . 9]
[0 . 0 0 . 0 0 .0 8 .2 7 . 9 7 . 9 7 .3 8 .9 7 . 1 8 . 9]
[0 . 0 0 . 0 0 .0 0 .0 9 . 1 6 . 1 9 .3 8 .9 7 . 0 8 . 4]
[0 . 0 0 . 0 0 .0 0 .0 0 . 0 8 . 0 8 .8 7 .6 7 . 4 6 . 0]
[0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 6 .7 9 .2 7 . 0 8 . 3]
[0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 .0 10 .9 8 .6 1 0 . 4]
[0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 .0 0 .0 8 . 5 5 . 4]
[0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 6 . 4]
[0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0]

Figure 2: The distances between each of the averages. Values aij with i ≥ j have been set to zero. Otherwise
the matrix would be mirrored in the diagonal.

1http://yann.lecun.com/exdb/mnist/

1

http://yann.lecun.com/exdb/mnist/

5 0 5 10
8

6

4

2

0

2

4

6

8

2D visualization of PCA-reduced MNIST train data
(cloud centers are large points with black outline)

0
1
2
3
4
5
6
7
8
9

Figure 3: PCA

2 0 2 4 6 8 10

2

0

2

4

6

8

10

2D visualization of UMAP-reduced MNIST train data
(cloud centers are large points with black outline)

0
1
2
3
4
5
6
7
8
9

Figure 4: UMAP

40 20 0 20 40

60

40

20

0

20

40

2D visualization of T-SNE-reduced MNIST train data

0
1
2
3
4
5
6
7
8
9

Figure 5: T-SNE

The pair that is closest together seems to be “seven” and “nine”, with a distance of around 5.4. This makes
sense, since we can see in Figure 1 that “seven” and “nine” seem to overlap quite a lot. This would then
indicate that this classifier would be at least reasonably accurate, since it is able to pick up on the “closeness”
of “seven” and “nine”, as well as other digits you would expect to be close to each other, such as “four” and
“nine”. Therefore it is also likely that the classifier would classify a digit correctly if it is “close” to any of the
averages.

1.2

Clearly, we can see from Figure 3, Figure 4 and Figure 5 that each of the visualisations seem to match our
intuition: 7 is close to 9, as is 4, while for example, 0 is always very far away from 1, just as we would expect.

1.3

On the training set, the algorithm classified 1474 of the digits correctly, and 233 incorrectly, for a percentage
of 86.35%. On the test set, the algorithm classified 804 digits correctly, and 196 incorrectly, for a percentage of
80.4%. Therefore, the classifier is reasonably accurate, but far from perfect.

1.4

Using the KNN classifier (with k = 3), we classified 1671 of the training set correctly, and 36 incorrect for a
percentage of 97.89%. On the testing data, we classified 914 correctly, 86 incorrectly, for a percentage of 91.4%.

In order to get an understanding of the digits that get misclassified, we can consider the so-called confusion
matrix. In this confusion matrix, the element aij , 0 ≤ i, j ≤ 9 represents the number of digits i that get classified

2

[318 0 1 0 0 0 0 0 0 0]
[0 252 0 0 0 0 0 0 0 0]
[1 0 195 0 0 0 0 4 1 1]
[1 0 1 129 0 0 0 0 0 0]
[0 2 0 0 117 0 0 0 0 3]
[3 0 0 0 0 84 1 0 0 0]
[0 1 0 0 1 0 149 0 0 0]
[0 0 0 0 1 0 0 164 0 1]
[1 2 0 4 1 0 0 0 136 0]
[1 0 0 1 0 0 0 3 0 127]

Figure 6: The KNN confusion matrix on the train set

[219 0 2 0 1 0 1 0 0 1]
[0 119 0 0 0 0 2 0 0 0]
[6 2 87 1 0 0 1 1 3 0]
[4 0 1 70 0 2 0 0 0 2]
[0 2 1 0 78 1 0 1 0 3]
[5 0 0 9 1 37 0 0 0 3]
[2 1 0 0 1 0 86 0 0 0]
[0 3 0 1 3 0 0 56 0 1]
[1 2 0 4 1 0 1 2 79 2]
[1 0 0 0 0 0 0 3 1 83]

Figure 7: The KNN confusion matrix on the test set

as j. So a33 is the number of “threes” that get correctly classified, and a12 is the number of “ones” classified as
a “two”.

However, from the confusion matrices Figure 6 and Figure 7, we see that the digits that are most often
confused are not the ones we would expect given our visualisation: on the test set, only 3 of the “four” digits
get classified as a “nine”, while not a single “nine” gets classified as a “four”. Meanwhile, 9 “fives” get classified
as a “three”, while “three” and “five” were not very close according to the visualization.

One possible explanation for this discrepancy is that there are large differences between the total number
of each digit in both the train and the test set. In the training set, there are > 300 “zeros”, but < 90 “fives”.
This could then bias our classifier towards “zeros”, since the probability that a “zero” is accidentally one of the
nearest neighbours is fairly large, while the probability that a “five” is correctly the nearest neighbour is small,
since there are comparatively few “fives”.

This would explain why so many digits get incorrectly classified as a “zero”, and why so few digits get
classified as a “five”. In order to circumvent this problem, one might normalize the number of instances for each
digit, in order to more accurately determine which digits are difficult to distinguish, and possibly to improve
the correctness of the KNN classifier, but this is outside the scope of this report.

Task 2: Implement a multi-class perceptron algorithm

For this task we created a single-layer perceptron with 10 nodes using the multi-class perceptron training
algorithm. The inputs for this node were 256 + 1 bias (which is equal to 1). The output has 10 values between
0 and 1, each one representing one digit. The index of the maximum value of the output determines the digit
that our perceptron predicts for each input.

We implemented two ways of training the perceptron. The first one uses the whole training data set for
calculating one update for the weights. The second one calculates an update for the weights with each individual
input from the training data set one by one and then repeats the process until the perceptron is trained. In
Table 1 we compare how efficiently each of the two implementations trained the perceptron.

The weights are initialized using np.random.RandomState, where a seed is set to make results reproducible.
All of the results can be generalized with small differences for any initialization of the weights, which is something
that was tested by changing the seed for the random state. The weights have a shape of 257 × 10 because we
have 257 inputs (256 + 1 bias) and 10 nodes to our single-layer perceptron.

The way the weights are updated is by using the “Adaline learning rule”. At first we calculate the dot product
of our inputs with the weights. We then use the activation function over the result of this multiplication to get
values between 0 and 1. The activation function in our case is a sigmoid with the formula: f(x) = 1

1+e−x , which
always gives a value between 0 and 1. We then update the weights by using the formula

∆W = η · x · (d− out)

where η is the learning rate, d is the correct output, out is the result of the activation function over the
multiplication result and x is the input we used.

One issue we faced while developing the algorithm was that we were unable to implement the “Neuron
learning rule” to update the weights by making use of the derivative of the activation function over the output.
The formula for this is: ∆W = η · x · (d− out) · out′(x) where out′(x) = out(x) · (1− out(x)). When using this
learning rule the weights were not getting updated correctly and the algorithm never converged, giving us very
low accuracy.

The stopping condition for both training methods is to stop when the accuracy over the training set is equal
to 1 or until the number of consecutive loops over the whole training set with no improvement is 15. The
number 15 was selected after trying different numbers for multiple initialization of the weights. The learning

3

rate was also tested for different initializations of the weights and it was found that η = 0.2 was able to train
the perceptron every time and was faster than smaller values.

0 20 40 60 80 100
Number of times trained over the whole dataset

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Comparing the Accuracy of the two implementations

Training Set (Whole Dataset Method)
Training Set (Inputs one by one Method)
Testing Set (Whole Dataset Method)
Testing Set (Inputs one by one Method)

Figure 8: The accuracy of both the training and testing sets for the two different implementations of the
perceptron training. We can clearly see that the method of training using the inputs one by one requires less
loops over the whole training set, it is however much slower as compared with the method of using the whole
data set at once.

We can clearly see in both Figure 8 and Table 1that both methods have trained the perceptron and the
algorithm converged. We achieve perfect accuracy on the training set meaning that no cases were misclassified.
For the testing set the accuracy falls to around 88% for both cases (a bit lower for the one by one implementation
but almost insignificant). The real difference between the two comes at the time they required in order to
converge. When we used the whole data set instead of training for each input the training time reduced
significantly (by a factor of around 2.5). Although in Figure 8 we can see that this approach uses the training
data set more times in order to reach a plateau, doing one matrix multiplication instead of 1707(the number of
inputs in the training set) requires less time, reducing the overall amount of time and thus making the algorithm
more efficient.

Method Training Set Accuracy Testing Set Accuracy Running Time

Whole data set 0.986 0.881 2.869
One by one 1.000 0.872 6.729

Table 1: The results of the accuracy of the multi-class perceptron on the training and testing data set with the
running times of the training process.

Lastly we print the confusion matrices for both training methods. The two matrices for the testing set are
shown in Table 2, the left table representing the whole data set approach and the right table the one by one
approach. The matrices for the training set are not in the report because the accuracy is almost or equal to
1, meaning that the matrices are almost completely diagonal and there is no more information to be obtained
from the confusion matrix. From the tables we can see that both perceptrons had some difficulties classifying
the digits 4 and 5 (accuracy is around 0.75 compared to the 0.88 for all the digits) and did exceptionally well
in classifying the digits 0, 1 and 6 (accuracy over 0.92). Both perceptrons confused inputs of the digit 2 with
the digit 8. As we see in the left table 6 inputs of the digit 2 were classified as 8 and 8 cases on the right table.

When comparing the perceptrons accuracy to the distance-based classifier based on centroids and the KNN
method from the task 1, the KNN method is the one achieving the highest accuracy on the testing set. The
distance-based classifier based on centroids also outperforms the perceptron. The results are presented in
Table 3. The perceptron is limited by the fact that it has only a single layer, which may be the reason why it
is not able to compete with simple distance-based classifiers.

Task 3: Implement the XOR network and the Gradient Descent Al-
gorithm

Our task is to implement a multi-layer neural network, for which the weights are adjusted (trained) using a
gradient descent algorithm.

4

0 1 2 3 4 5 6 7 8 9

0 214 0 4 1 3 0 0 0 1 1
1 0 117 0 0 1 0 2 0 0 1
2 2 0 83 2 5 0 1 2 6 0
3 1 0 2 63 0 5 0 2 4 2
4 2 1 2 1 66 2 2 4 1 5
5 3 0 0 5 2 41 1 1 0 2
6 3 0 0 0 2 1 84 0 0 0
7 0 0 1 1 3 0 0 56 0 3
8 3 0 1 4 1 4 1 1 76 1
9 0 1 0 0 1 0 0 3 2 81

0 1 2 3 4 5 6 7 8 9

0 215 0 2 0 3 0 2 0 1 1
1 0 117 0 0 1 0 2 0 0 1
2 1 0 83 4 3 0 1 1 8 0
3 2 0 3 67 0 1 0 1 3 2
4 3 2 4 0 63 3 3 1 1 6
5 3 0 0 3 3 41 0 2 0 3
6 1 0 0 0 2 4 83 0 0 0
7 0 1 1 0 4 0 0 55 0 3
8 3 2 2 4 2 1 1 3 72 2
9 0 2 1 0 2 0 0 5 2 76

Table 2: The confusion matrices for the testing data set for the two different implementations of the perceptron
training. On the left is for the perceptron trained with the whole training set each time, while on the right for
the perceptron trained with the inputs given one by one.

Method Training Set Accuracy Testing Set Accuracy

Perceptron
(Whole data set) 0.99 0.88
Perceptron
(One by one) 1.00 0.87
distance-based classifier
(based on centroids) 0.86 0.80
KNN (k = 3) 0.98 0.91

Table 3: The results of the accuracy of the multi-class perceptron on the training and testing data set compared
with the distance-based classifier and the KNN method from Task 1

3.1

Our function xor net(inputs, weights) simulates the network with two inputs, two hidden nodes and one output
node. The first three elements of the weights vector correspond to the incoming weights for the first hidden
nodes. The next three elements correspond to the incoming weights for the second hidden node. The final three
elements correspond to the incoming weights for the output node. The sigmoid activation function is used by
all non-input nodes

3.2

The mse(weights) function iterates over all possible inputs of the network inp ∈ {0, 1}2 and adds the squared
norm of each difference vector to the result sum. Finally, the result sum divided by the number of inputs (4) is
returned.

3.3

The grdmse(weights) function calculates the update of the weights using the Generalized Delta Rule:

∆Wji = ηδjyi, where δj =

{
φ′(vj)(dj − yj) if j is an output node

φ′(vj)
∑

k of next layer δkwkj if j is a hidden node
(1)

with wji the weight from node j to node i, η the learning rate, yj the output of node j, and vj the activation
of node j.

The calculation of ∆W is done using back propagation, meaning that it starts with calculating the three
incoming weights of the output node, after which the six total incoming weights of the two hidden nodes
are computed. ∆W is calculated for all four possible input-output pairs, and then the averaged vector (with
dimension 9, like the weights vector) is returned.

3.4

The gradient descent algorithm starts by initializing weights to a vector of 9 normally distributed (mean
0, standard deviation 1) random values. Then the algorithm iteratively updates weights using weights :=
weights + η · grdmse(weights) until xor net(inputs, weights) is correct for all input-output pairs (where an
output value greater than 0.5 is interpreted as “1” and other values are interpreted as “0”).

5

0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration number

0.15

0.20

0.25

0.30

0.35

M
ea

n
Sq

ua
re

d
Er

ro
r

Mean Squared Error for each training iteration
= 0.3
= 0.6
= 0.8

Figure 9: MSE value across gradient descent iterations, for different learning rates η.

0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f i
nc

or
re

ct
 c

as
es

Number of incorrectly classified cases for each training iteration
= 0.3
= 0.6
= 0.8

Figure 10: Number of incorrectly classified inputs across gradient descent iterations, for different learning rates
η.

Results

We start by training the network on the XOR input-output pairs using different values for the learning rate η.
Here the same initial weights were used across training runs. Figure 9 shows the evolution of the MSE during
training. In this example, a higher learning rate leads to faster convergence. This does not always hold, and
in our experiments we saw cases where η = 0.6 took fewer iterations than η = 0.8, for instance. A possible
cause could be that with a higher learning rate the algorithm more easily ‘overshoots’ desired weight values.
Figure 10 shows number of incorrectly classified inputs during training. In this example the pattern is visually
similar for all three values for η, and we can see that the number of incorrectly classified inputs decreases earlier
for higher η.

A different initialization strategy was also used for the weights. Instead of sampling from the N (0, 1)
distribution we sample from the U(−1, 1) distribution. Figure 11 and Figure 12 show that sampling from a

0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration number

0.15

0.20

0.25

0.30

0.35

M
ea

n
Sq

ua
re

d
Er

ro
r

Mean Squared Error for each training iteration
Normal
Uniform

Figure 11: MSE value across gradient descent iterations, for initial weights sampled from a normal distribution
and for weights sampled from a uniform distribution.

6

0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f i
nc

or
re

ct
 c

as
es

Number of incorrectly classified cases for each training iteration
Normal
Uniform

Figure 12: Number of incorrectly classified inputs across gradient descent iterations, for initial weights sampled
from a normal distribution and for weights sampled from a uniform distribution.

uniform distribution leads to faster convergence for our example. Learning rate η = 0.3 was used here. An
explanation for this could be that the sampled values are not as close to 0 when using the uniform distribution,
which means that a given input may lead to more extreme activations (farther from 0.5) using the initial weights.
These activations could mean that the initial network is closer to an XOR network in its behavior.

Finally, the “lazy approach” for finding weights was used. A vector of 9 normally distributed weights was
repeatedly generated, until a set of weights implementing the XOR network was found. This experiment was
repeated for multiple runs, and the results can be found in Table 4. On average, 131,891 sets of weights needed
to be generated, but there is a large variance with outliers as small as 8,992 and as large as 393,348. We can
conclude that the “lazy approach” is inefficient and inconsistent in the number of loop iterations required.

Run #Loop iterations

1 52,980
2 46,931
3 393,348
4 87,585
5 43,016
6 8,992
7 271,175
8 151,100

Table 4: Number of loop iterations (sets of weights) needed to find weights for the xor net, using the lazy
approach.

Conclusions

The distance-based classifier, the KNN classifier and the single-layer perceptron were all implemented success-
fully for use with the MNIST data set. KNN showed the highest accuracy by a small margin among these
classifiers, followed by the distance-based classifier based on centroids. The single-layer perceptron showed the
lowest accuracy. Finally, the XOR network was trained successfully using back propagation for different learning
rate values and different weight initialization strategies.

Contributions

Report task 1: Daan Planken
Report task 2: Ioannis Koutalios
Report task 3: Jelle Pleunes
Code: everyone

7

