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Abstract
Light carries information across interstellar dis-
tances. Capturing such light with telescopes al-
lows astronomers to investigate galaxies, plan-
ets, or black holes. However, atmospheric and
other disturbances pose a challenge. To overcome
these, adaptive optics (AO) systems (e.g. tele-
scopes) consist of many deformable mirrors (DM)
which mitigate noise when correctly adjusted. Re-
cent work has focused on applying reinforcement
learning (RL) techniques to automatically control
the DM. However, prior work on RL AO control
for astronomical imaging relied on sensors di-
rectly measuring disturbances’ effects on images.
In this work, we propose a sensorless approach
in which a model-free Soft Actor-Critic agent
learns to control DM to center and sharpen im-
ages. We find that our agent is successful in cen-
tering images and also in sharpening images. The
performance in the latter task, however, strongly
depends on the number of DM. Thus, our results
demonstrate that the main challenge in RL-based
AO control lies in its high action dimensionality.

1. Introduction
How do galaxies form and evolve? What are the characteris-
tics of distant planets? How do black holes affect their sur-
rounding? To find answers to these questions, astronomers
rely on any information they can gather from sources at an
interstellar distance. The most important carrier of such in-
formation is light captured through telescopes on Earth or in
space. The obtained measurements can then be used to com-
pute properties like velocity, composition, or temperature
of interstellar objects or to simply visualize the unimagin-
able. However, recording light from sources billions of light
years away is sensitive to even the smallest disturbances in
the atmosphere or from other sources like vibrations. To
counter those disturbances, adaptive optics (AO) systems
consist of many individual deformable mirrors (DM) that
can be adjusted to balance out disturbances and obtain a
clean measurement.

Controlling a telescope’s DM is a high-dimensional decision
problem that follows a constant loop of adjusting mirrors

and checking the adjustment’s effect on the acquired image.
Due to the sequential nature of this process and a clearly
defined goal measure (reducing the noise), prior work in-
creasingly focused on applying reinforcement learning (RL)
to AO control (Durech et al., 2021; Landman et al., 2021;
Nousiainen et al., 2021; Pou et al., 2022; Parvizi et al.,
2023a;b). However, recent work on RL-based AO control
for astronomical imaging relied on systems that contain
a sensor measuring the disturbance present in images and
trained RL agents to choose actions based on their effect on
this sensor (Nousiainen et al., 2021; Landman et al., 2021).

In this work, we demonstrate that RL can also be used
for sensor-free AO control in the context of astronomical
imaging. We argue that this approach is advantageous as it
reduces the overall system complexity by removing the sen-
sor component and with it any potential noise or bias such
a sensor can introduce. We show that a pre-implemented
and only slightly modified soft actor-critic (SAC) agent can
learn AO control based only on the observed image. We
evaluate our approach on several tasks for centering and
sharpening images. We find that our SAC agent success-
fully learns to center images. Sharpening images proves to
be more challenging as it makes use of the full number of
DM. Experimenting with reducing the action space through
grouping DM revealed that our agent can control several
DM successfully but that increasing the number of control-
lable DM causes both performance loss and longer training.
These results confirm that the key challenge for RL-based
AO control lies in the large action dimensionality.

This work aims to provide a new RL-based approach for
AO control in the context of astronomical imaging. To this
end, we make the following contributions:

• We show that a model-free SAC agent can perform
sensorless AO control for centering and sharpening
astronomical images.

• We demonstrate that the key challenge for applying RL
to AO lies in the high action dimensionality required
by realistic AO systems for astronomical imaging.

• Through the discussion of our work and the review
of related work, we identify the need for a univer-
sal RL-based AO control benchmark that would allow
comparability across related works.



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Model-Free Reinforcement Learning for Sensorless Adaptive Optics

In the following, we start by giving an overview of the
underlying concepts of AO and RL, and the used SAC algo-
rithm before providing a concise summary of related work.
Following that, we give a detailed description of our experi-
ments followed by a presentation of our results. Afterward,
we critically discuss the shortcomings of our work and po-
tential for future work in the field before closing with a
conclusion.

2. Preliminaries
2.1. Adaptive Optics

AO is a technique used to correct for disturbances in optical
systems. In astronomy, for example, it can be used to correct
for the blurring of images caused by the atmosphere, through
a set of sophisticated DM, allowing for sharper images to
be taken.

Usually, an AO system consists of a wavefront sensor, a
DM, and a control system. The wavefront sensor measures
the wavefront distortion caused by the atmosphere and the
control system calculates the required correction to be ap-
plied to the DM. The change of the DM then causes the
correction to the wavefront, allowing for a sharper image
to be taken (Roddier, 2004). This operation is repeated at
a high frequency, allowing for real-time correction of the
wavefront as in a closed feedback loop.

The phase variations of the wavefront can be described by
a set of Zernike polynomials, which are a complete set of
orthogonal functions on the unit circle (Beckers, 1993). The
Zernike polynomials are used to describe the wavefront
distortion in terms of a set of coefficients, which are then
used to calculate the required correction to be applied to
the DM. The number of Zernike modes used to describe
the wavefront distortion is called the order of the system.
The higher the order of the system, the more accurate the
correction applied to the wavefront will be.

Guide stars are used to measure the wavefront distortion. A
guide star is a bright star (usually < 15 mag) in the field
of view of the telescope, which is used as a reference to
measure the wavefront distortion. The sky coverage of an
AO system is limited by the number of guide stars available
in the field of view of the telescope at around 10% (Davies
& Kasper, 2012). For this reason, we often use laser guide
stars, which are artificial stars created by shining a laser into
the atmosphere and can cover the entire sky.

2.2. Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learn-
ing concerned with training agents to make sequential de-
cisions that maximize an observed reward within a certain
environment. As such, RL is most commonly researched

in games where possible actions, the environment, and the
reward are usually clearly defined. However, RL is by no
means limited to the virtual domain and can be applied to
real-life problems whenever the problem can be formulated
as a sequential decision-making problem for which the qual-
ity of decisions can be quantified by a reward function. Such
real-life applications most commonly are concerned about
automatic control, e.g. for self-driving vehicles (Kiran et al.,
2022) or, like in this case, for controlling adaptive optics to
improve astronomical imaging.

The specific type of problem for which RL is a suitable ap-
proach can be formally described as Markov Decision Pro-
cesses (MDP). A MDP is formalized as a tuple ⟨S,A,P,R⟩.
Here:

• S is the set of possible states of the environment.

• A is the set of actions available to the agent.

• P is the transition function, where P(s′|s, a) denotes
the probability of transitioning to state s′ when per-
forming action a in state s.

• R is the reward function, where R(s, a, s′) defines the
immediate reward associated with transitioning from
state s to s′ by taking action a.

The agent interacts with the environment in a sequence of
discrete time steps, t = 0, 1, 2, . . ., by selecting actions
according to a policy π, which maps states to actions. The
goal is to learn the optimal policy π∗ that maximizes the
expected cumulative reward over time.

π∗ = argmax
π

E

[ ∞∑
t=0

γt · R(st, at, st+1)

]
(1)

Here, γ ∈ [0, 1) is the discount factor that controls the
trade-off between immediate and future rewards.

In the context of our adaptive optics (AO) application, states
represent the currently obtained image, actions correspond
to adjustments of the deformable mirrors, the transition
function is unknown, and the reward function depends on the
specific task. For example, the reward for image sharpening
is the Strehl ratio which measures image sharpness.

2.3. Soft Actor-Critic

Soft Actor-Critic (SAC) is a policy-based, model-free re-
inforcement learning algorithm designed for continuous
action spaces first proposed by Haarnoja et al. (2018). Due
to its characteristics, it is very suitable for our given AO
problem as we are dealing with continuous actions and the
unknown transition function P is no issue for model-free
RL algorithms that do not attempt to estimate P anyway.
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As an instance of actor-critic algorithms, SAC uses an actor
for action selection and a critic for value estimation. Di-
viding these two tasks among two agents that are trained
separately allows for improved stability and is a feature
of many RL algorithms. SAC’s distinctive feature is its
incorporation of entropy regularization which encourages
exploratory decision making.

In this work, we use the SAC implementation available
through Stable Baselines. For further details on this spe-
cific implementation, we refer the reader to the respective
documentation 1.

While we also experiment with an Advantage Actor-Critic
(A2C) agent, a variant of the Asynchronous Advantage Ac-
tor Critic (A3C) (Mnih et al., 2016), we generally saw SAC
outperforming the A2C agent. Thus, we mainly focused
on experimenting with the SAC agent and decided to not
include a dedicated section on the A2C agent.

3. Related Work
AO can be applied not only to astronomical imaging but to
any imaging task where a DM can be controlled to mitigate
disturbances affecting the image. Just like for its application,
there is also a large variety of previously proposed methods
for AO control. In this section, we will give a concise
overview of such previous work, focusing on RL-based
methods, and discuss how our work integrates into the field.

A common approach of previous work is to use RL for pre-
dicting the temporal evolution of disturbances from past
experiences using a Wavefront Sensor (WFS). Landman
et al. (2021) employ a model-free RL approach based on
the Deterministic Policy Gradient algorithm to optimize a
Recurrent Neural Network controller to mitigate the effect
of telescope vibrations through tip-tilt control of a DM. Nou-
siainen et al. (2021) follow a model-based approach, where
the model is learned via supervised learning from previous
experiences and can be used to estimate the image distor-
tions resulting from changes to the DM. Using this model,
an RL agent is trained via Probabilistic Ensemble Trajectory
Sampling (PETS) to find actions that maximize the expected
future rewards. Model updating and agent training are re-
peated consecutively until convergence indicates a (local)
optimum has been reached. Further work has explored the
use of multi-agent reinforcement learning (Pou et al., 2022).

While differing in their algorithmic choices and their use of
a dynamics model, both Landman et al. (2021) and Nousi-
ainen et al. (2021) train an RL agent on input from a WFS.
In contrast to that, we train the agent directly on images.
While this training directly from images has been done for

1https://stable-baselines.readthedocs.io/
en/master/modules/sac.html

RL-based control of AO, it was either applied to microscopy
(Durech et al., 2021), satellite-to-ground communication
(Parvizi et al., 2023a;b), or a simulated laboratory imaging
setup (Ke et al., 2019). To the best of our knowledge, no
previous work has been done on RL-based AO control for
astronomical imaging trained directly on the raw images.

4. Experiments
Our experiments are conducted using the set of Adaptive
Optics environments provided by Rico Landman 2. The orig-
inal environments were modified slightly to fit our needs 3.
We then created a set of experiments to test the performance
of the SAC and A2C algorithms in different environments.
The experiments were conducted on multiple identical ma-
chines with an Intel Core i5-7500 CPU @ 3.40GHz, 8GB
of RAM, and no GPU.

4.1. Environments

There are a total of 4 environments provided by Rico Land-
man, of which we used 3. The first environment is the
“Centering AO system” environment, which is used to cen-
ter the light of the central star. The second environment is
the “Sharpening AO system” environment, which is used
to sharpen the image. The third environment is the “Sharp-
ening AO system easy” environment, which is a simplified
version of the “Sharpening AO system” environment. The
fourth environment is the “Darkhole AO system” environ-
ment, which is used to create a dark hole in the image. The
“Darkhole AO system” environment was not used in our
experiments.

4.1.1. CENTERING AO SYSTEM

To control the centering of the light on the central star, the
agent has to only control the first two Zernike modes. The
action space is therefore 3-dimensional (we also include
the 0th-order Zernike mode). Each action is a continuous
value between -0.3 and 0.3 in units of radians. The reason
for the range of the action space is to avoid divergence of
the system. The observation space is the focal image of
the telescope. For the resolution we used, the observation
space is 48x48 pixels. Higher-resolution images can be
used, but this would increase the computational cost of the
experiments. The reward function is the negative of the
distance between the center of the image and the center of
the star. The closer the center of the image is to the center
of the star, the higher the reward.

2https://github.com/ricolandman/gym_ao
3https://github.com/johnkou97/gym_ao

https://stable-baselines.readthedocs.io/en/master/modules/sac.html
https://stable-baselines.readthedocs.io/en/master/modules/sac.html
https://github.com/ricolandman/gym_ao
https://github.com/johnkou97/gym_ao
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4.1.2. SHARPENING AO SYSTEM

The goal of the “Sharpening AO system” environment is
to learn a control policy that sharpens the image based on
the currently obtained image. The observation space is the
focal image of the telescope (48x48 pixels) and the reward
function is the Strehl ratio of the image. The Strehl ratio is
a measure of image sharpness, between 0 and 1. A Strehl
ratio of 1 means that the image is perfectly sharp, while a
Strehl ratio of 0 means that the image is completely blurred.

We can choose the amplitude of the wavefront RMS error,
which is the standard deviation of the wavefront error. The
higher the amplitude of the wavefront RMS error, the more
distorted the wavefront will be. We can also choose the
number of Zernike modes used to correct the wavefront
distortion. The higher the number of Zernike modes, the
more accurate the correction applied to the wavefront will
be. The default amplitude of the wavefront RMS error is 1.7
and the default number of Zernike modes is 20.

4.1.3. SHARPENING AO SYSTEM EASY

This environment is a simplified version of the “Sharpen-
ing AO system” environment. The observation space and
reward function are the same as in the base environment.
The key difference is the filtering of the wavefront distortion.
In the base environment, the wavefront distortion always
includes an infinite number of Zernike modes, as it would be
in a real-world scenario. In the easy environment, the wave-
front distortion is filtered to include only a finite number of
Zernike modes, equal to the number of Zernike modes we
use to correct the wavefront. This makes the environment
easier to solve, as we can always achieve an optimal value
of the Strehl ratio.

The environment has now the unique property that it be-
comes harder to solve as the number of Zernike modes
used to describe the wavefront distortion (and therefore the
number of Zernike modes used to correct the wavefront)
increases. Because higher-order Zernike modes are less im-
portant for the wavefront, this change is more pronounced in
the first few Zernike modes and becomes less pronounced as
the number of Zernike modes increases. After a certain num-
ber of Zernike modes, the “Sharpening AO system easy”
environment will essentially become the same as the “Sharp-
ening AO system” environment.

4.2. Experimental Setup

The experiments were conducted using the SAC and A2C al-
gorithms (see Section 2.3). The environments were already
implemented in the OpenAI Gym framework, however, an
additional wrapper was created to allow the environments
to be used with the Stable Baselines library. All the differ-
ent experiments and wrappers can be found in a publicly

available repository 4.

We first conducted a set of experiments to test the perfor-
mance of the SAC and A2C algorithms in the “Center-
ing AO system” environment. The goal of the experiments
was to test the performance of the algorithms in a simple en-
vironment, to ensure that the algorithms were implemented
correctly. We varied the size of the buffer used in the SAC
algorithm to see how it affected the performance of the al-
gorithm. More specifically, we tested the performance of
the SAC algorithm using buffer sizes of 10, 100, and 1000.
The number of steps used for training was 100,000. For
robustness, we averaged the results over at least 3 runs.

We then worked on the “Sharpening AO system easy” envi-
ronment. We again used the SAC and A2C agents to train in
the environment. We performed a set of experiments using
different numbers of Zernike modes to describe and correct
the wavefront distortion. We first trained the agents using 2
Zernike modes, then 5, 9, 14, 20, 27 and 35. The number of
steps used for training was different for each experiment, as
the number of Zernike modes used to describe the wavefront
distortion affects the difficulty of the environment. The num-
ber of steps used for training was 100,000 for the 2 Zernike
modes experiment, 200,000 for the 5 Zernike modes experi-
ment, 200,000 for the 9 Zernike modes experiment, 300,000
for the 14 Zernike modes experiment, 800,000 for the 20
Zernike modes experiment, 2,000,000 for the 27 Zernike
modes experiment and 6,000,000 for the 35 Zernike modes
experiment. We also varied the buffer size used in the SAC
algorithm, increasing it as the number of Zernike modes
increased. For the 2 Zernike modes experiment, we used a
buffer size of 100, 1000, 10000, and 20000. For 5 Zernike
modes, we tested buffer sizes of 1000, 10000, and 20000.
We then used buffer sizes of 10000 and 20000 for the 9
Zernike modes experiment, 10000, 20000, and 50000 for
the 14 Zernike modes experiment and 10000, 20000, and
50000 for the 20 Zernike modes experiment. Finally, we
only used a buffer size of 100000 for the 27 and 35 Zernike
modes experiments. Once again, we averaged the results
over at least 3 runs for robustness.

Lastly, we experimented with the “Sharpening AO system”
environment, using the SAC algorithm. We first used the
default amplitude of 1.7 for the wavefront RMS error and
trained two agents using 14 and 20 Zernike modes. We then
lowered the amplitude of the wavefront RMS error to 1.2
and trained a single agent using 20 Zernike modes. For all
experiments, we used a buffer size of 100000, which is the
maximum buffer size we could use with the computational
resources we had. Because of computational constraints, we
didn’t keep a constant number of steps for training, and in
some cases, we only performed a single run.

4https://github.com/johnkou97/
AdaptiveOptics

https://github.com/johnkou97/AdaptiveOptics
https://github.com/johnkou97/AdaptiveOptics
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In all experiments, we used the default hyperparameters for
the SAC and A2C algorithms, as provided by the Stable
Baselines library. The only hyperparameter we changed
was the buffer size used in the SAC algorithm, as mentioned
previously. For each experiment, we tested the performance
during training by comparing it to a “no-agent” baseline,
which is the performance in the environment without any
agent controlling the deformable mirror. This means that
the actions at each step are always 0. This was chosen over
a random agent as the random agent would give a worse
performance because of the divergence of the system.

We kept track of the performance of the agents during train-
ing by getting the reward at each step to create a learning
curve. We also evaluated the performance of agents af-
ter training. For the “Centering AO system” environment,
we evaluated the performance of the best agent over 1000
episodes, with each episode being 100 steps long. For the
“Sharpening AO system easy” environment, we evaluated
the performance of each agent over 100 episodes, with each
episode being 100 steps long. We then picked the best
agent and evaluated its performance over 1000 episodes.
In each evaluation, we also evaluated the performance of
the “no-agent” baseline. For the “Sharpening AO system”
environment, we did not evaluate the performance of the
agents after training, as the agents’ training did not indicate
learning beyond the “no-agent” baseline.

5. Results
In this section, we present the results of the experiments
that we discussed in the previous section. In Figure 1, we
show the learning curves for the “Centering AO system”
environment. We can see that the SAC algorithm with a
buffer size of 1000 was able to learn a good control policy,
while the A2C algorithm as well as the SAC algorithm with
buffer sizes of 10 and 100 were not able to perform better
than the “no-agent” baseline. In Figure 2, we show the
evaluation performance of the best agent, which was the
SAC algorithm with a buffer size of 1000, compared to
the “no-agent” baseline. We can see that the best agent
was able to get very close to the optimal value of the reward
(which is 0), while the “no-agent” baseline has a much lower
performance.

We can then move on to the “Sharpening AO system easy”
environment. In Figure 3 we show the learning curves
for the different agents trained in the environment using 2
Zernike modes. We can see that all the agents were able to
perform better than the “no-agent” baseline, with the SAC
performance being better than the A2C performance. The
size of the buffer used in the SAC algorithm had a signifi-
cant effect on the performance of the agent, with the best
performance being achieved with a buffer size of 20000.
Regarding the evaluation performance on 1000 episodes,

Figure 1. Learning Curves for different agents in the “Center-
ing AO system” environment. The x-axis is the number of steps
and the y-axis is the reward at each step, which is the negative
of the distance between the center of the image and the center
of the source. The “no-agent” baseline is the performance of the
environment without any agent controlling the deformable mirror
and is represented by the purple line.

Figure 2. Evaluation Performance of the best agent in the “Center-
ing AO system” environment. The x-axis is the average reward
over each episode and the y-axis is the frequency of each reward.
We compare the performance of the best agent to the “no-agent”
baseline.

we can see in Figure 4 that the best agent, based on the 100-
episode evaluation, was able to outperform the “no-agent”
baseline in every episode. The performance was also very
close to what we would expect in a realistically corrected
wavefront. For this case and all other settings of the “Sharp-
ening AO system easy” environment, the evaluation of all
agents on 100 episodes can be found in Appendix B.

We then continue with a harder version of the environment,
using 5 Zernike modes. In Figure 5 we show the learning
curves for the different agents trained in the environment
using 5 Zernike modes. We can now see a clear distinction
between the performance of the SAC and A2C algorithms,
with the SAC algorithm being able to learn a good control
policy, while the A2C algorithm was barely able to per-
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Figure 3. Learning Curves for different agents in the “Sharpen-
ing AO system easy” environment using 2 Zernike modes. The
x-axis is the number of steps and the y-axis is the reward at each
step, which is the Strehl ratio of the image. The “no-agent” base-
line is the performance of the environment without any agent
controlling the deformable mirror and is represented by the brown
line.

Figure 4. Evaluation Performance of the best agent in the “Sharp-
ening AO system easy” environment using 2 Zernike modes. The
x-axis is the average reward over each episode and the y-axis is
the frequency of each reward. We compare the performance of the
best agent to the “no-agent” baseline.

form better than the “no-agent” baseline in some runs. The
size of the buffer used in the SAC algorithm had, again,
a significant effect on the performance of the agent. The
best performance was achieved with a buffer size of 10000,
which had similar performance to the 20000 buffer size, but
better stability on different runs. Both of these buffer sizes
were able to outperform the 1000 buffer size, which was
able to learn, but with a worse performance. On the evalu-
ation performance, we can see in Figure 6 that the 20000
buffer size was able to outperform the “no-agent” baseline,
in almost every episode, with a good performance for our
standards.

In Figure 7 we show the learning curves for the different
agents trained in the environment using 9 Zernike modes.

Figure 5. Learning Curves for different agents in the “Sharpen-
ing AO system easy” environment using 5 Zernike modes. The
x-axis is the number of steps and the y-axis is the reward at each
step, which is the Strehl ratio of the image. The “no-agent” base-
line is the performance of the environment without any agent
controlling the deformable mirror and is represented by the purple
line.

Figure 6. Evaluation Performance of the best agent in the “Sharp-
ening AO system easy” environment using 5 Zernike modes. The
x-axis is the average reward over each episode and the y-axis is
the frequency of each reward. We compare the performance of the
best agent to the “no-agent” baseline.

The A2C algorithm was only able to perform as well as the
“no-agent” baseline, while the SAC algorithm was able to
learn a good control policy. For the two buffer sizes used in
the SAC algorithm, we can see that the 20000 buffer size
was able to outperform the 10000 buffer size, with better
performance and stability. We also noticed that the 10000
buffer size was able to learn in fewer steps than the 20000
buffer size and reach an acceptable performance, but with
worse stability. On the evaluation performance, we can
see in Figure 8 that our best agent was able to outperform
the “no-agent” baseline, in all but a few episodes, with a
good performance for our standards. There is however a
big spread in the performance of the agent, and also a spike
near the zero reward, which means that in some episodes
the agent failed to correct the wavefront.
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Figure 7. Learning Curves for different agents in the “Sharpen-
ing AO system easy” environment using 9 Zernike modes. The
x-axis is the number of steps and the y-axis is the reward at each
step, which is the Strehl ratio of the image. The “no-agent” base-
line is the performance of the environment without any agent
controlling the deformable mirror and is represented by the red
line.

Figure 8. Evaluation Performance of the best agent in the “Sharp-
ening AO system easy” environment using 9 Zernike modes. The
x-axis is the average reward over each episode and the y-axis is
the frequency of each reward. We compare the performance of the
best agent to the “no-agent” baseline.

For the 14 Zernike modes experiment, we show the learning
curves for the different agents trained in the environment
in Figure 9. The A2C algorithm was barely able to reach
the performance of the “no-agent” baseline, while the SAC
algorithm was able to learn a good control policy for dif-
ferent buffer sizes. The 10000 buffer size was the worst
performing out of the three buffer sizes. The other two
buffer sizes had a similar performance, with both showing
some instability in the later stages of training. Based on
the evaluation performance of all the different agents with
the baseline in Figure 21, we have chosen the 20000 buffer
size as the best agent. In Figure 10 we show the evaluation
performance of this agent, which was able to outperform the
“no-agent” baseline, with a very similar shape as in Figure 8
for the 9 Zernike modes experiment.

Figure 9. Learning Curves for different agents in the “Sharpen-
ing AO system easy” environment using 14 Zernike modes. The
x-axis is the number of steps and the y-axis is the reward at each
step, which is the Strehl ratio of the image. The “no-agent” base-
line is the performance of the environment without any agent
controlling the deformable mirror and is represented by the purple
line.

Figure 10. Evaluation Performance of the best agent in the “Sharp-
ening AO system easy” environment using 14 Zernike modes.
The x-axis is the average reward over each episode and the y-axis
is the frequency of each reward. We compare the performance of
the best agent to the “no-agent” baseline.

Making the environment even harder, we show the learning
curves for the different agents trained in the environment
using 20 Zernike modes in Figure 11. In this case, the A2C
algorithm was not able to perform better than the “no-agent”
baseline, while the SAC performed well, especially with
higher buffer sizes. We, however, notice the instability of
the 100000 buffer size, which in one run completely “forgot”
the learned policy at the later stages of training. Despite that,
it also provided the best performance, and we have chosen
it as the best agent. In Figure 12 we show the evaluation
performance of this agent, with clearly better performance
than the “no-agent” baseline. It is clear, though, that in many
episodes the agent failed to correct the wavefront, with a
reward of close to zero.
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Figure 11. Learning Curves for different agents in the “Sharpen-
ing AO system easy” environment using 20 Zernike modes. The
x-axis is the number of steps and the y-axis is the reward at each
step, which is the Strehl ratio of the image. The “no-agent” base-
line is the performance of the environment without any agent
controlling the deformable mirror and is represented by the purple
line.

Figure 12. Evaluation Performance of the best agent in the “Sharp-
ening AO system easy” environment using 20 Zernike modes.
The x-axis is the average reward over each episode and the y-axis
is the frequency of each reward. We compare the performance of
the best agent to the “no-agent” baseline.

In the next step, we increased the number of Zernike modes
to 27. The learning curves are shown in Figure 13. We now
have only one agent, which is the SAC algorithm with a
buffer size of 100000. The agent was able to learn a good
control policy, with a better performance than the “no-agent”
baseline. The evaluation performance of this agent is shown
in Figure 14, with a good performance, but a lower ceiling
than in the previous experiments. The spread, however, is
smaller than in the previous experiment, and the same is
true for the spike near the zero reward.

The final experiment in the “Sharpening AO system easy”
was done with 35 Zernike modes. In this version, we had
a clear distinction from all the previous experiments as we
were no longer able to see any learning with the agent we

Figure 13. Learning Curve for the agent in the “Sharpen-
ing AO system easy” environment using 27 Zernike modes. The
x-axis is the number of steps and the y-axis is the reward at each
step, which is the Strehl ratio of the image. The “no-agent” base-
line is the performance of the environment without any agent
controlling the deformable mirror and is represented by the orange
line.

Figure 14. Evaluation Performance of the agent in the “Sharpen-
ing AO system easy” environment using 27 Zernike modes. The
x-axis is the average reward over each episode and the y-axis is
the frequency of each reward. We compare the performance of the
agent to the “no-agent” baseline.

used, which was, once again, the SAC algorithm with a
100000 buffer size. The learning curve didn’t even reach the
“no agent” baseline and we therefore didn’t evaluate it, as it
was clearly below optimal. We show the learning curve in
Figure 15.

Moving from the “Sharpening AO system easy” to the
“Sharpening AO system” environment, we had an idea of
what to expect, since this is a harder environment to train on
even when compared to using 35 Zernike modes on the easy
version. We made two attempts with different RMS errors
for the wavefront, and in both cases, we were not able to
achieve any learning. We show the learning curves for the
1.7 RMS error in Figure 16 and for the 1.2 RMS error in
Figure 17. We performed only a single run for each agent
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Figure 15. Learning Curve for the agent in the “Sharpen-
ing AO system easy” environment using 35 Zernike modes. The
x-axis is the number of steps and the y-axis is the reward at each
step, which is the Strehl ratio of the image. The “no-agent” base-
line is the performance of the environment without any agent
controlling the deformable mirror and is represented by the orange
line.

in the 1.7 RMS error experiment and two runs for the 1.2
RMS error experiment. We didn’t evaluate the performance
of the agents at the end of training, as the agents were not
able to learn a good control policy.

Figure 16. Learning Curves for the agent in the “Sharpen-
ing AO system” environment using a 1.7 RMS error. One agent
was trained using 14 Zernike modes and another agent was trained
using 20 Zernike modes to control the AO system. The x-axis
is the number of steps and the y-axis is the reward at each step,
which is the Strehl ratio of the image. The “no-agent” baseline is
the performance of the environment without any agent controlling
the deformable mirror and is represented by the green line.

From all the different experiments we run it becomes clear
that the SAC agent is capable of handling an AO control
system without the need for a wavefront sensor. We were
able to successfully train the SAC agent on the “Center-
ing AO system” as well as different versions of the “Sharp-
ening AO system easy”. The results were suboptimal in the

Figure 17. Learning Curve for the agent in the “Sharpen-
ing AO system” environment using 20 Zernike modes and a 1.2
RMS error. The x-axis is the number of steps and the y-axis is the
reward at each step, which is the Strehl ratio of the image. The
“no-agent” baseline is the performance of the environment without
any agent controlling the deformable mirror and is represented by
the orange line.

sense that we would expect them to be more stable in the
evaluation phase, which could be attributed to the lack of
hyperparameter tuning.

The main issue was the lack of any learning when we
switched to the 35 Zernike modes version of the “Sharp-
ening AO system easy”, which of course continued when
we experimented with the “Sharpening AO system” envi-
ronment. Such sophisticated environments require some
additional tricks or a more careful consideration of the Neu-
ral Networks being used and the hyperparameters that con-
trol the learning process. We discuss those aspects more
in-depth in the next section.

6. Discussion
In this section, we critically reflect on our work and discuss
its shortcomings as well as implications for future work in
the field.

While the results presented in Section 5 show that our ex-
periments were successful to a certain degree, we see two
main shortcomings of our work. First, we applied our cho-
sen RL agents almost completely out of the box. We did
not perform systematic hyperparameter tuning, nor model
parameter tuning except for trying different buffer sizes.
While the results do show successful learning, the lack of
parameter tuning prohibits us from understanding the full
potential these RL agents could unfold with their (close to)
optimal parameter configuration. This is due to the extreme
effect even a single parameter can have on an agent’s perfor-
mance, as we demonstrated for the buffer size. Second, our
results lack a competitive baseline based on previous work.
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Instead, we only compare our results to an inactive agent
that never performs any actions. Comparison to previously
proposed RL-based AO controllers would allow for a better
understanding of how our approach integrates into the ex-
isting work. While problematic for our work, we also see
this as a challenge for the whole AO-control research field
as there is no coherent evaluation, and proposed methods
are not compared to competitive methods. Instead, the most
commonly used baseline is an integrator which is a simple
control algorithm that based control on accumulations of
wavefront sensor measurements over time. Since we per-
form sensorless control, an integrator was not a suitable
baseline for us.

The lack of a universal evaluation framework and applica-
ble baselines led to us comparing our results to that of an
inactive agent. However, the most limiting aspect of our
experiments was the computational cost together with the
project timeframe. It is due to these reasons that we de-
cided to not perform in-depth parameter tuning. We tried
to reduce the computational load by applying the SR-SAC
agent which was proposed as a more sample-efficient agent
(D’Oro et al., 2023). We hoped this sample efficiency would
reduce training time and, therefore, allow running more and
longer experiments. However, we could not achieve any
learning using the SR-SAC implementation provided by its
original authors 5. A more detailed summary of our work
using SR-SAC can be found in Appendix A.

Given our promising results and the discussed shortcomings
of our work, we see a few avenues for future work building
up on and going beyond our work. Regarding the discussed
limitations of our work’s shortcomings, we see value in fu-
ture work overcoming them. For the parameter tuning, this
could simply be achieved by investing more computational
resources allowing for a systematic and extensive parameter
tuning procedure. In addition to tuning hyper and model pa-
rameters, we also think an extensive comparison of available
pre-implemented RL agents could already provide valuable
insights into the suitability of different agents for the given
task without requiring too much implementation effort. The
fact that, despite only considering two agents and perform-
ing almost no parameter tuning, our results show successful
learning for up to 27 Zernike modes causes us to be opti-
mistic that parameter tuning and comparison of more agents
would allow for significant performance improvements and
enable learning even for more than 27 Zernike modes. Tack-
ling the issue of comparability between our method and
previously proposed ones is less straightforward. It requires
either identifying an applicable previously proposed method
whose implementation is available and which can serve as a
competitive baseline for our environments, or the develop-

5https://github.com/proceduralia/high_
replay_ratio_continuous_control

ment of a general benchmark for evaluating sensorless AO
control for astronomical imaging. While the former would
be the simpler way to improve our work, we see the latter as
much more impactful for tackling the issue of comparability
beyond our work and for the whole research field.

7. Conclusion
In this work, we have demonstrated that a model-free SAC
agent can successfully learn AO control for the centering or
sharpening of astronomical images. Contrary to prior work
on AO control, our agent learns directly from the resulting
images without requiring measurements from a wavefront
sensor. Due to this sensorless approach, we can skip the step
of predicting actions’ effects on sensor measurements and
can train directly for their effect on the acquired image. Our
experiments confirmed that the large action space caused
by a large number of individual mirrors within a single tele-
scope poses a significant challenge for applying RL to AO
control. Nonetheless, our agent was able to show successful
learning for up to 27 Zernike modes. By overcoming the
discussed shortcomings of our work, we see large potential
in approaching similar performance also in more realistic
settings with much larger action spaces. For now, we see
our work as a promising first step to achieving RL-based
sensorless AO control for astronomical imaging.
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A. Experiments with SR-SAC
A large part of our work focused on applying a Scaled-by-
Resetting SAC (SR-SAC) agent, a variant of the SAC agent
that would allow for training with a higher sample efficiency
(D’Oro et al., 2023). The idea behind SR-SAC is to perform
periodic resets of the agent’s critic and actor parameters.
These resets are introduced to reduce the capacity loss which
refers to artificial neural networks losing their ability to
generalize to new unseen data when being trained for too
long. This is especially problematic for RL as the data, i.e.
collected experiences, changes based on the state of training,
i.e. how good the current policy is. Overcoming this issue
of capacity loss then allowed for the use of higher replay
ratios, i.e. more training can be done using experiences
from the replay buffer without environment interaction. It is
this increase in replay ratio that allows SR-SAC to be more
sample efficient.

However, we were not able to successfully train the SR-SAC
agent on any of our used environments. In fact, even when
turning off the resets, making it equivalent to the normal
SAC agent, and using the same parameter as for our SAC
agent, we were not able to observe any learning. This is
despite us being able to successfully replicate results on
the DeepMind Control Suite benchmark reported by D’Oro
et al. (2023).

As a consequence, we discarded the SR-SAC agent and
focused on evaluating the SAC and A2C agents available
through stable baselines. Nonetheless, we still believe that
computationally efficient variants of SAC or other agents
could be a valuable option for future research as we have
seen that increasing action dimensions causes significantly
longer training times. More efficient agents could reduce
the overall time needed for training and, thus, free resources
for parameter tuning.
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B. Extra Evaluation Figures
We provide additional evaluation figures for the experiments
conducted in the “Sharpening AO system easy” environ-
ment. The figures show the evaluation performance of all
the different agents at the end of training, as well as the
performance of the “no-agent” baseline. For this evaluation,
we used 100 episodes, with each episode being 100 steps
long. The reward for each episode is the average reward
over the 100 steps.

We show the evaluation performance of the agents trained
using 2 Zernike modes in Figure 18, 5 Zernike modes in
Figure 19, 9 Zernike modes in Figure 20, 14 Zernike modes
in Figure 21, and 20 Zernike modes in Figure 22.

Figure 18. Evaluation Performance of all the different agents in
the “Sharpening AO system easy” environment using 2 Zernike
modes. The x-axis is the average reward over each episode and
the y-axis is the frequency of each reward. We compare the perfor-
mance of the different agents to the “no-agent” baseline.

Figure 19. Evaluation Performance of all the different agents in
the “Sharpening AO system easy” environment using 5 Zernike
modes. The x-axis is the average reward over each episode and
the y-axis is the frequency of each reward. We compare the perfor-
mance of the different agents to the “no-agent” baseline.

Figure 20. Evaluation Performance of all the different agents in
the “Sharpening AO system easy” environment using 9 Zernike
modes. The x-axis is the average reward over each episode and
the y-axis is the frequency of each reward. We compare the perfor-
mance of the different agents to the “no-agent” baseline.

Figure 21. Evaluation Performance of all the different agents in
the “Sharpening AO system easy” environment using 14 Zernike
modes. The x-axis is the average reward over each episode and
the y-axis is the frequency of each reward. We compare the perfor-
mance of the different agents to the “no-agent” baseline.

Figure 22. Evaluation Performance of all the different agents in
the “Sharpening AO system easy” environment using 20 Zernike
modes. The x-axis is the average reward over each episode and
the y-axis is the frequency of each reward. We compare the perfor-
mance of the different agents to the “no-agent” baseline.


