
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

DQN for Deep value-based Reinforcement Learning
Reinforcement Learning - Assignment 2

Ioannis Koutalios (s3365530)1 Eduard R. Munne (s3687988)1 Maria F. Pinar (s3289850)1

1. Introduction
In this assignment, we will use deep neural networks in
Reinforcement Learning (RL). A neural network will be
developed as a function approximator where the goal is to
learn the optimal action-value function. The input of such a
network is the state of the environment, while the output is
the action of the agent.

The advantage of using deep neural networks in Reinforce-
ment Learning is that more complex problems can be ad-
dressed. In comparison with Tabular Reinforcement Learn-
ing, which can only be used in small, low-dimensional state
spaces, neural networks can perform in larger state spaces
with higher dimensions. They are also more suitable to
handle continuous state spaces with no need for discretiza-
tion which is something that would be required in Tabular
Reinforcement Learning.

We will implement one of the most common algorithms
for using deep neural networks in Reinforcement Learning
which is the deep Q-network (DQN). This is a variant of
the Q-learning algorithm which is being used in Tabular
Reinforcement Learning. A deep neural network will try
to approximate the action-value function by mapping the
states to expected rewards for each possible action.

We will be using the “Cartpole” environment from the gym
module of OpenAI (Brockman et al., 2016; openAI, n.d.).
An un-actuated joint connects a pole to a cart, which moves
along a frictionless track. The pole can rotate around its
pivot point and the pendulum is balanced on the cart by
applying forces in the left and right directions. This is
an adaptation of an environment described in Barto et al.
(1983).

The number of actions that the agent can take is two, either
moving to the right or left of its current position. The reward
it receives is +1 for every step it takes. Each episode can
either end when the pole is tilted beyond a certain angle
(±12◦) or if the cart moves too far in the right or left direc-
tion (±2.4). The episode will also terminate if it reaches a

1Leiden University, P.O. Box 9513, 2300 RA Leiden, The
Netherlands.

2nd Assignment for the course of Reinforcement Learning

maximum number of steps which for the version of Cartpole
that will be implemented is 500 according to the documen-
tation (openAI, n.d.). The state space consists of different
observations for both the cart and the pole. For the cart, we
have its position and velocity, while for the pole we have
the angular position and angular velocity. All these values
will be encompassed in an array of size four.

In Section 2 we will describe all the different algorithms
that we implemented and explain the different concepts that
play a role in the performance of our network. Then in
Section 3 we will show our results and try to interpret them
using general concepts from Reinforcement Learning and
Deep Learning. Finally, in Section 4 we will discuss the
overview of our experimentation and summarize the things
we derived.

2. Methods
In this study, we have employed the PyTorch framework
to develop a Deep Q-Network (DQN) model that enables
our agent to learn how to balance a pole in a Cartpole envi-
ronment to keep upright. The Cartpole environment is an
open-source environment provided by OpenAI available to
Python users through the gym library.

The primary objective of our work is to achieve optimal
performance in the Cartpole environment using our DQN
model, evaluate different addons to the basic DQN algorithm
and compare different exploration strategies.

2.1. DQN algorithm

When dealing with high-dimensional problems, traditional
tabular learning methods are often insufficient, and more
complex solutions are needed. Instead of measuring the
expected reward for each state-action pair, we can estimate
the expected reward using a neural network that allows us
to estimate the Q-values by inputting a state.

Reinforcement Learning entails selecting an action based
on previous knowledge from a particular state. When a state
has not been visited, all available actions have the same
probability of being chosen because Q-values are identical.
Nevertheless, this approach becomes unfeasible for high-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2021

dimensional problems. Consequently, the convergence of
Q-values is expected to occur after visiting various states.
By learning from previous states, the model can gradually
improve and optimize its performance generalizing to un-
visited states.

One such solution for high-dimensional problems is the
Deep Q-Network (DQN) algorithm (see Algorithm 1). The
DQN employs a neural network that is trained on pre-
vious attempts, using the mean squared error (MSE) as
the evaluation metric to compare the old update target
y = r + γa′(s′, a′) with the expected reward (Q-value)
estimated by the DQN ŷ at the actual state s for a total of
N steps (Plaat, 2022). Parameter γ denotes the discount
factor set at 0.99 for this study. Later, an optimizer is used
to find the optimal θ parameters that minimize the error in
our DQN model.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (1)

The DQN algorithm involves two nested loops. The
outer loop is responsible for generating multiple epochs
or episodes, during which the model parameters are updated
based on the results obtained in each episode.

During each episode, the agent takes a sequence of steps,
selecting an action that may involve exploration. Further
details on exploration are provided in Section 2.2. The
chosen action is executed, and the old updated target y is
compared to the expected reward estimated by the DQN
model ŷ. This comparison is used to calculate the loss
and converge the model towards optimal parameters that
minimize the difference between both values. The episode
continues until the pendulum can no longer remain upright,
at which point the episode concludes and a new one begins
from the initial state.

After a sufficient number of episodes, the agent can ac-
curately predict the optimal action for a given state, and
successfully prevent the pendulum from falling.

However, the DQN algorithm poses three significant chal-
lenges that must be addressed for successful implementa-
tion. The first challenge corresponds to achieving optimal
Q-value coverage, as it is not possible to explore the entire
state space. Consequently, there may be unexplored state-
action pairs that could cause the expected reward to diverge
from the actual value.

The second challenge involves dealing with the correlation
of subsequent values that are evaluated, which can result in
the model focusing towards a specific region of the environ-
ment. This bias can unbalance the exploration-exploitation
trade-off, causing the model to follow the optimal policy in
many cases without exploring further. This, in turn, affects

Algorithm 1 DQN algorithm (Plaat, 2022)
Input: Exploration type, the number of episodes Ne, the
amount of steps S, the discount parameter γ ∈ [0, 1] and
the learning rate α.
Return: Rewards (R) for each episode.
Initialization: An empty rewards list (R), an initialized
DQN model that we will train with weights W .
s← s0
for e = 1, ..., Ne do

re = 0 {re is the reward for each episode, zero at the
beginning of each episode}
for t = 1, ..., S do
a ∼ π(a|s) {Sample an action}
r, s′ ∼ p(r, s′|s, a) {Perform one step}
ŷ ← DQNa(s) {Forward pass on the DQN model}
y ← r + γ ·max(DQN(s′))
L ←MSE(y, ŷ)

∇L ← ∂L
∂W

W ←W − α · ∇L {Backpropagation of the loss}
s← s′

if s is sterminal then
break

end if
end for
R[e− 1]← t

end for

to the first challenge of coverage.

The final challenge is achieving convergence. Since the
loss function is the mean squared error (MSE) between two
values that are dependent on the model’s parameters (the
actual Q-value and the old updated target), overshooting the
target is a risk.

Successfully addressing these challenges requires imple-
menting effective solutions, and numerous approaches have
been proposed in the field of Reinforcement Learning to
overcome these issues. In this study, we will evaluate the
effectiveness of different approaches in addressing these
challenges and their impact on the performance of the DQN
algorithm.

2.1.1. HYPERPARAMETER OPTIMIZATION

Selecting the optimal combination of hyperparameters is
crucial to achieving high performance in Machine Learn-
ing models. Before conducting the ablation study, we first
searched for the set of hyperparameter values that would
maximize the model’s performance.

To expedite the search process, we employed the Tree-
structured Parzen Estimator (TPE) algorithm using the
optuna library. TPE is an independent sampling method

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2021

that generates a surrogate model to identify the most promis-
ing regions for each hyperparameter and then exploits them.
Specifically, TPE creates a Gaussian Mixture Model (GMM)
for the best performing runs, l(x), and another GMM for
the poorer performing runs, g(x), based on the model’s
performance. By comparing the ratio of these two values,
TPE identifies the most promising regions, which are those
where the hyperparameter values tend to result in better
model performance. This approach allows us to focus our
search on the most promising regions, thereby avoiding un-
necessary evaluation of irrelevant regions as can occur with
a grid search.

We work with a probability density function (pdf), which
implies that

∫ l(x)
g(x)dx = 1. This balance between explo-

ration and exploitation is achieved by exploring regions
with low probability while exploiting the most promising
regions. Initially, the model performs 10 random samples
to identify the most promising regions. After that, it selects
the hyperparameter values based on the pdf.

When a hyperparameter value results in better performance,
the objective function increases, and the ratio l(x)

g(x) becomes
more peaked at that region, leading to reduced exploration.
This is optimal because it focuses the search on the region
that is likely to result in the highest reward.

Ultimately, we obtain the best run, which mitigates the issue
of uncorrelated values between different hyperparameters.
A value of one hyperparameter may harm or not complement
another one, and selecting the best run allows us to optimize
all hyperparameters simultaneously.

2.2. Exploration Strategy

In model-free RL exploration is needed to inspect the un-
known environment and learn the optimal policy. It is based
on adding randomness in the selection procedure of the next
action. How to implement this randomness leads to different
types of exploration strategies.

The ϵ−greedy policy adds some random selection by the use
of the ϵ ∈ (0, 1) value, which represents the probability of
an action to be randomly selected or using the greedy policy.
The mathematical expression for this policy is Equation (2).

π(a|s) =

{
1.0− ϵ |A|−1

|A| if a = argmaxa(Q(s))
ϵ

(|A|) otherwise

(2)

The Boltzmann policy also includes exploration by using the
temperature parameter τ ∈ (0,∞). For τ ∼ ∞ the policy
becomes random and for τ ∼ 0 the policy becomes greedy.

Mathematically, it can be expressed as the Equation (3).

π(a|s) = eQ(s,a)/τ∑
b∈A eQ(s,a)/τ

(3)

The ϵ−greedy and Boltzmann policies are used in the experi-
mentation. To compare how both policies influence learning,
they have been compared using different parameters.

Both strategies use parameters to control the amount of
randomness implemented. These parameters can be varied
during the train so the amount of exploration is different
throughout the experiment. For example, applying more
exploration at the beginning and then following the optimal
policy -that is, applying more exploitation- can enhance
learning.

As an extra experiment, the anneal function has been ap-
plied, which varies the parameters from higher to lower, i.e.
applying more exploration at the beginning and then more
exploitation varying linearly.

For the ϵ− greedy policy with linear annealing we have:

ϵ = ϵfinal + (ϵstart − ϵfinal)
tf − t

tf
(4)

where ϵstart, ϵfinal are the initial and final values of the ex-
ploration parameter,t represents time (number of episodes)
and tf represents the number of episodes after which
the annealing terminates and the exploration parameter
keeps its minimal value. To calculate this value we use
tf = (per) · ttotal, where ttotal is the total number of
episodes during the learning process and 0 < per < 1 is
the percentage after which we stop the annealing.

Using an annealing function for the Boltzmann softmax pol-
icy is very similar. We only need to change the exploration
parameter in the above equations with τ instead of ϵ.

We also implemented a novelty based exploration algorithm
as it was described in Tang et al. (2016). More information
on the implementation and how this exploration strategy
works can be found in Appendix A.2.

2.3. Experience Replay

To address the challenge of correlation when training our
model with subsequent actions that are close in the state
space and can bias our model, we can use an experience
replay buffer. This approach enables the sampling of histori-
cal information by utilizing a cache that updates the weights
based on non-subsequent information that is uncorrelated.
The buffer is an array with a fixed capacity that stores in-
formation such as the state, action, reward, next state, and
whether the terminal state (pendulum fall) has been reached.
At each episode step, we add a new sample to the buffer and

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2021

update the DQN weights using random samples of batch
size sb from the buffer, selected uniformly without replace.

This approach allows us to avoid falling into local min-
ima and incorporate supervised learning to our model, as
we have features and targets for each sample. Moreover,
increasing the buffer’s capacity allows us to access older
information that is less correlated with the current state,
increasing the range of possibilities.

In this study, we compared the DQN’s performance with
and without the experience replay feature.

2.4. Target Network

In our current approach, we update the model parameters
at every step by following the optimal policy for that par-
ticular region. However, a different approach that involves
infrequent weight updates has been proposed in the litera-
ture (Plaat, 2022), which has been shown to yield improved
results (Mnih et al., 2015). This method involves cloning
the DQN model into a target network, denoted as Q̂, after
every C steps. This helps to stabilize the algorithm against
sudden changes in weights that can arise due to continuous
updating, which can result in high oscillations. By delaying
the weight update until C steps are done, we achieve greater
stability in the model. In this study, we will compare the
performance of the DQN algorithm with and without the
target network to assess the impact of this additional model
Q̂ on the algorithm’s overall performance.

3. Results
To account for randomness, all plots represent the average
of 5 runs with a smoothing of window size of 51 applied.
The shaded area indicates the standard deviation at each step
across the five runs. All the runs considered were limited
to a maximum reward of 500 (consecutive steps) for 1,000
episodes.

3.1. Exploration

To identify the best action selection method, we evaluated
six different options, including the basic ϵ-greedy and Boltz-
mann methods, along with variations that incorporated lin-
ear annealing and a novelty-based approach (described in
Section A.2). To determine the optimal parameter values
for each method, we tested various combinations of ϵ and τ
values.

Initially, we experimented with selecting exploration meth-
ods by manually trying different hyperparameter values
using a trial and error approach. We eventually identified
the optimal hyperparameters for each method, which are
presented in Table 1 and are applied to all experiments in
this subsection.

Hyperparameter Value
Number layers 2
Hidden units 128
Dropout rate 0.2

Optimizer Adam
Learning rate 10−3

Batch size 32
Target network 100

Table 1. Manually selected hyperparameters that improve the
model’s performance and enable evaluation of the best action
selection method using fixed values.

In Figure 1, we present the evaluation of the ϵ-greedy
method using three distinct values of ϵ (0.02, 0.1, and 0.3),
where higher values correspond to an increased exploration
of the environment and less reliance on the optimal policy.

The plot illustrates that the best results are achieved with
low values of ϵ. Specifically, performance is quite similar
for both ϵ = 0.02 and ϵ = 0.1. However, for high values of
ϵ (e.g., ϵ = 0.3), performance drops reaching a plateau at a
maximum reward of 150 steps without any further improve-
ment in learning after 200 episodes.

0 200 400 600 800 1000
Time

0

50

100

150

200

250

300

Re
wa

rd

 = 0.02
 = 0.1
 = 0.3

Figure 1. Comparing the average rewards over time for three dif-
ferent values of the ϵ parameter (0.02, 0.1 and 0.3). We can see
that lower values, which correspond to high exploitation of the
optimal policy, lead to better performance.

We evaluated the simple Boltzmann selection method with
three different values of τ : 0.01, 0.1, and 1. Results are
shown in Figure 2. The average rewards were fairly con-
sistent across all values, but slightly better for low values
of τ , where the model has a higher tendency to exploit the
optimal policy without getting stuck in a local optimum.

When applying linear annealing to the ϵ-greedy method, we
attempted to explore more at the first stages, gaining more
knowledge of the environment and exploiting the optimal

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2021

0 200 400 600 800 1000
Time

0

50

100

150

200

250

300

Re
wa

rd

temp = 0.01
temp = 0.1
temp = 1.0

Figure 2. Average reward as a function of time for three different
implementations of the Boltzmann softmax policy (τ valued 0.01,
0.1 and 1). Each line represents a different value of the exploration
parameter τ . The performance of all models was very similar and
only slightly better for lower values.

policy at the last stages by decreasing ϵ from 0.4 to 0.1 after
a certain percentage of the total episodes. We evaluated
three different percentages of episodes required to reach
the minimum ϵ = 0.01: 30%, 60%, and 90%. The results
displayed in Figure 3 show that the model was able to learn.
The performance however was less than what we have pre-
viously observed in Figures 1 and 2. There could be several
reasons for this, such as the wrong selection of ϵ values,
being too extreme and causing either too much exploration
or exploitation at certain steps, making the model unable
to reach the same level of performance as the constant ϵ-
greedy method. As a result, we decided to discard this
method for the rest of the experiments as the results were
not satisfactory enough to compete with the other selection
methods.

For the Boltzmann linear annealing method, we chose to
vary the exploration parameter from τ = 2 to 0.01. As we
can see in Figure 4 the learning process was successful for
all the different values of the percentage parameter.

For our last experiment to find the best selection action pol-
icy we compared all the different models we implemented.
We used the best parameters for each of them training the
model for 1,000 episodes. In this experiment, we also in-
cluded the novelty based exploration strategy for both the
ϵ− greedy and the Boltzmann softmax policy, as it is de-
scribed in Appendix A.2.

In Figure 5 we can find the results of our experiment. We
notice that the performance of all the different implementa-
tions is very similar. The agent learns the environment and
has a steady performance after a bit more than 200 episodes.

0 200 400 600 800 1000
Time

0

25

50

75

100

125

150

175

Re
wa

rd

egreedy linear anneal, per = 0.3
egreedy linear anneal, per = 0.6
egreedy linear anneal, per = 0.9

Figure 3. The average rewards over time using the ϵ− greedy
policy with linear annealing. Each line represents a different per-
centage of the total training time after which the annealing process
has finished and the explorations parameter remains constant at
the minimal value. Although our agent was able to learn under
this selection action policy, the final performance was far from
optimal.

3.2. Hyperparameter optimization

We aimed to identify the optimal hyperparameters that
would improve the model’s performance maximizing the
reward. Using the optuna package and a TPE model out-
lined in Section 2.1.1, we ran a total of 50 trials (with a
warmup of 10 trials) to identify the best hyperparameters.
Table 2 displays the results of these trials, highlighting the
optimal hyperparameters we discovered.

Hyperparameter Value
Number layers 3
Hidden units 256
Dropout rate 0.2

Optimizer Adam
Learning rate 10−4

Batch size 32
Target network 75

Table 2. Optimal hyperparameters identified through TPE study
after 50 evaluations, with an average reward for the last 20 episodes
of 235.85.

We selected the ϵ-greedy method as our default action selec-
tion method with a fixed value of ϵ = 0.3. We conducted
500 episodes with a maximum episode length of 500 steps
to explore the optimal combination of hyperparameters un-
der the same conditions for all experiments, including the
experience buffer and the target network.

More details on the hyperparameter optimization method
can be found in Appendix A.1.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2021

0 200 400 600 800 1000
Time

0

50

100

150

200

250

Re
wa

rd

boltzmann linear anneal, per = 0.3
boltzmann linear anneal, per = 0.6
boltzmann linear anneal, per = 0.9

Figure 4. Comparing the average rewards for different percentages
when using the Boltzmann softmax policy with linear anneal. The
performance of all the different values is very similar, as they were
all able to learn efficiently.

3.3. Ablation study

To evaluate the impact of both experience replay and target
network on the DQN model’s performance, we conducted
an ablation study comparing the complete DQN (labelled as
DQN in the plots) to simpler models. To denote the removal
of a specific feature, we used ’-’ as a notation, where ER
represents the experience replay buffer and TN is the target
network. Therefore, DQN-ER refers to the model without
experience replay (i.e. simple DQN with target network).

The results of the ablation study, presented in Figure 6,
demonstrate the performance of different variants of the
DQN algorithm, including DQN-ER-TN, DQN-ER, and
DQN-TN. As expected, the complete DQN model, which
includes both the experience replay buffer and target net-
work, outperforms simpler models, with the exception of the
DQN-TN. These results suggest that while the presence of a
target network can improve performance, it has less impact
than the experience buffer to achieve a high performance in
the DQN algorithm.

The performance of the DQN with target network did not
show a significant improvement over the simpler method,
which may have been caused by an incorrect implementa-
tion of the target network or a suboptimal selection of the
update step. However, upon further evaluation, we discov-
ered that the poor performance was primarily due to the
biased hyperparameter tuning approach. Our hyperparam-
eter optimization was developed with the complete DQN
model in mind, and thus, the selected hyperparameters were
optimal only for that specific case and not necessarily for all
the models. To address this issue, we compared the perfor-
mance of the DQN model with the optimal hyperparameters
(Table 2) to that of the DQN-ER-TN and DQN-ER models

Figure 5. The rewards over time for all the different selection ac-
tion policies that were implemented. For each model we used the
best performing value of the exploration parameter. We see that
they all managed to achieve similar performance and learn after a
short number of episodes.

with the manually selected hyperparameters (Table 1). The
results of this comparison are shown in Figure 7.

The findings presented in Figure 7 support our hypothesis
that the target network does not significantly improve the
performance of DQN-ER-TN. Nonetheless, the model ap-
peared to be more stable than the simple DQN, exhibiting
fewer peaks due to the delayed update of the target DQN as
discussed in Section 2.4 and reaching higher rewards than
the ones with the optimal hyperparameters (Table 2).

The combination of ER and TN addresses some of the limi-
tations of the simple DQN method, as explained in Section
2.

3.4. Model Evaluation

As a final evaluation, we wanted to test the performance
of our model after the learning process is completed. We
chose our best-performing model, the DQN with both the
ER and the TN, combined with the Boltzmann softmax
policy for the selection action policy (τ = 0.1). Then,
we let the model learn and saved its parameters after the
training was completed. Finally, we let the agent run without
learning and with a completely exploitative selection action
policy (ϵ− greedy with ϵ = 0) so that our agent is always
exploiting the optimal policy.

We performed 1 000 repetitions for a maximum of 500 steps
and measure the returned rewards. The result was always
500 which is the maximum value for the reward after each
episode. This leads to the conclusion that our model was
able to learn the optimal policy, which our agent is following
during this evaluation.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2021

Figure 6. Ablation study comparing the performance of DQN, DQN-TN, DQN-ER, and DQN-ER-TN with optimal hyperparameters
(Table 2) after removing the experience replay (ER) and target network (TN). DQN-TN shows similar performance to DQN, indicating that
the presence of a TN is not as crucial as the experience buffer. However, the absence of the replay buffer heavily penalizes DQN-ER-TN
and DQN-ER, resulting in significantly lower performance.

Figure 7. Ablation study with DQN using optimal hyperparameters
(Table 2) and DQN-ER-TN and DQN-ER using manually selected
hyperparameters (Table 1).

4. Discussion
Four different experiments have been carried out in order
to develop and train a Deep Q-Network (DQN) model. The
first experiment consists of studying the different explo-
ration strategies as described in section 3.1. The ϵ-greedy
strategy presents evident differences in performance for
different values of epsilon (see Figure1). The best results
correspond to values that allow greater exploitation. The
same result can be extrapolated to the rest of the strategies,
although the discrepancy between performances using dif-
ferent parameters is less noticeable. One reason behind this
is the way the two selection-action policies are exploring. In
ϵ-greedy we have a completely random exploration, while
the Boltzmann policy uses a weighted probability to explore.
This means that after a certain number of episodes the Q-
values of the optimal policy will be much higher than the rest
and the exploration will be lower. This result can indicate
that aggressive exploration prevents exploiting the optimal
policy. A similar conclusion can be drawn from the results
obtained with the novelty-based policy. It is observed that
this policy do not outperform simpler methods by applying

more exploration, i.e., increasing the reward for states that
have been less visited. In general, it can be concluded that
strategies that favour exploitation obtain better results.

Although by applying annealing we would expect an im-
provement in performance, we observe that the reward ob-
tained is significantly lower for all strategies (see Figure 3
and Figure 4).

The best hyperparameters have been obtained for full DQN.
Thus, the results obtained with DQN-ER, DQN-TN and
DQN-ER-TN will be influenced by the hyperparameter se-
lection. It is interesting to point out the need to apply regu-
larization in the DQN network. When training, we observed
that the network presents overfitting, causing the reward to
decline drastically. This was solved by applying a dropout
after each layer. The consequence of the hyperparameter
tunning can be observed in the ablation experiment (see
Figure 6 and Figure 7). The DQN algorithm without TN
and ER seems to learn, but as expected, it does not reach the
same values as the full DQN algorithm. The noise observed
in DQN is corrected when applying TN, although no better
performance is obtained. However, by using DQN with ER
a better performance is obtained. This is due to the break in
the correlation between the points.

A last experiment is done by performing the model after the
learning procedure. A total of 500 rewards are obtained in
each iteration, leading to the conclusion that our model has
learned the optimal policy. During the training procedure,
the peak average reward that was observed was around 400.
When we evaluate the model we always get the maximum
reward of 500 due to no exploration.

In this assignment, we successfully developed a DQN net-
work and applied several techniques to address the chal-
lenges faced by the algorithm, such as coverage or correla-
tion, by incorporating a replay buffer and a target network.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2021

The resulting model was able to reach the maximum reward,
which involved maintaining a pendulum upright for all iter-
ations. As a result, we can conclude that the agent was able
to perform the task it was trained for without errors.

A. Bonus
A.1. Hyperparameter tunning

Figure 8. Analysis of the three most important hyperparameters
and their impact on the objective value. Each point represents a
trial and its corresponding objective value, defined as the average
reward over the last 20 episodes. The abscissa displays the value
of the corresponding hyperparameter, allowing us to identify the
regions that provide more optimal results.

A.2. Novelty based exploration strategy

A novelty based exploration strategy has been implemented
by using a count-based algorithm described in Algorithm 2.
The original code from Tang et al. (2016) has been adapted
to our code. This strategy is based on adding an intrinsic
reward for states that have been visited fewer times. This
way, the algorithm is encouraged to visit novel states. The
expression used for the rewards is Equation (5), which is
updated after every episode for each specific state.

rt = ret + βrit (5)

This policy needs to count how many times each state has
been visited. In the cartpole environment, the states are
defined in a continuum. To discretize them for counting we
use a simhash function 6 that maps the values as hash codes
by previously rounding the values to 1 decimal.

ϕ(s) = sign(Ag(s)) ∈ {−1, 1}k (6)

A.3. Double DQN

As discussed in Section 2.1, the evaluation metric for the
selected action was y = r + γ ·maxa′(Q(s′, a′)), where Q
is the policy DQN network with parameters θ that receives
the next state s′ as input. However, this approach tends
to be overoptimistic since we are using the same model

Algorithm 2 Count-based exploration through static hash-
ing (Tang et al., 2016)

Initialised the counts dictionary
for each e in episodes do do

Collect a set of state-action samples {(sm, am)}Mm
with policy π
Compute hash codes through SimHash ϕ(sm) =
sign(Ag(s)) ∈ {−1, 1}k
Update the counts in the dictionary
Update the policy rewards using rt = ret + βrit

end for

for selecting and evaluating actions, and thus, the same
parameters θ.

To mitigate this issue, we can adopt a similar approach as
the target network proposed in Section 2.4 by creating a
second network called the double DQN. The double DQN,
denoted as Q′ with parameters θ′, will be used to calculate
the Q-values for the next state s′, and thus, reducing the
overoptimistic consideration (van Hasselt et al., 2015). So
the selected action for the evaluation metric is obtained with
Q′ instead of Q. To update the double DQN Q′, we can
follow the same procedure as the target network and update
its parameters (θ′ = θ) after a fixed number of steps C.

Figure 9. Comparison between the DQN (including ER and the
TN) and the DDQN performance after 1,000 episodes with optimal
hyperparameters from Table 2.

We trained the Double DQN (DDQN) model for 1,000
episodes using the same hyperparameters as the DQN model
with the addition of a replay buffer, as listed in Table 2.
However, the resulting performance was similar to the DQN
model and did not show any significant improvement. One
potential explanation for this is the fixed maximum length
of 500, which had already been achieved by the DQN model
as demonstrated in Section 3.4. Consequently, the DDQN
model was not able to outperform the DQN model that
incorporated both the target network and experience buffer.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2021

References
Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike

adaptive elements that can solve difficult learning control
problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5):834–846, 1983. doi: 10.1109/
TSMC.1983.6313077.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015. doi: 10.1038/nature14236.

openAI. Cart pole#, n.d. URL https://www.
gymlibrary.dev/environments/classic_
control/cart_pole/.

Plaat, A. Deep Reinforcement Learning. Springer Nature
Singapore, 2022. doi: 10.1007/978-981-19-0638-1.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X.,
Duan, Y., Schulman, J., Turck, F. D., and Abbeel, P.
#exploration: A study of count-based exploration for deep
reinforcement learning. CoRR, abs/1611.04717, 2016.
URL http://arxiv.org/abs/1611.04717.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning, 2015.

https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
http://arxiv.org/abs/1611.04717

