
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Policy-based RL algorithms: REINFORCE, Actor-Critic and Clip PPO
Reinforcement Learning - Assignment 3

Ioannis Koutalios (s3365530)1 Eduard R. Munne (s3687988)1 Maria F. Pinar (s3289850)1

1. Introduction
In this assignment, we will study the policy-based approach
in Reinforcement Learning (RL). Both algorithms, REIN-
FORCE and Actor-Critic, use this approach to learn to per-
form a task. In this case, the algorithms will learn to play
paddle using the Catch environment. The main objective
of the assignment is to study different policy gradient tech-
niques.

We will be using the adapted Catch environment (Osband
et al., 2020). It is composed of columns and rows (set as 0)
and the paddle and the balls (set as 1). The agent moves the
paddle to catch the falling balls. There are three different
discrete actions for the paddle: stay, move left, and move
right. The environment is adjustable, so the parameters can
be changed to increase the difficulty for the agent to catch
the balls.

The principal difference between value-based and policy-
based algorithms is the way the policy is learned. In the
policy-based approach, the policy is learned directly, with-
out learning the value function. This method has some
advantages like the allowance of continuous actions or the
learning of stochastic policies. One of the algorithms we
will be using is the REINFORCE algorithm. The policy is
represented as the parameters (weights) of a neural network.
These parameters are updated using gradient ascent in the
direction of the better action.

The other algorithm we will use is the Actor-Critic algo-
rithm, which combines value-based and policy-based tech-
niques. This combination is done by the use of two neural
networks, the actor which predicts the actions, and the critic
which predicts the Q-values. Compared to REINFORCE,
this method has the advantage of presenting low variance
and low bias (Plaat, 2022), improving the performance and
stability of the model.

In Section 2 we explain in detail the different algorithms
used. Then, in Section 3, we present the results of the
experiments. Finally, in Section 4 we interpret the results.

1Leiden University, P.O. Box 9513, 2300 RA Leiden, The
Netherlands.

3rd Assignment for the course of Reinforcement Learning

2. Methods
2.1. REINFORCE

The Monte Carlo Policy Gradient (REINFORCE) is one
of the most widely used policy-based algorithms. This
approach works by updating the weights of the policy in the
direction of higher reward, without explicitly calculating the
value for each state-action pair. This results in an increase in
the probability of those actions that have returned a higher
reward.

In REINFORCE we define the performance objective J(θ)
that we aim to maximize with a gradient ascend approach.
Our objective function can be defined as: J(θ) = Eπθ

[R].

Since the Eπθ
[R] is the expectation for the reward by using

our policy πθ and selecting. Since R is a constant that does
not depend on the parameters θ of the model, we use the
trick of the logarithm of a derivative:

∇θ log f(θ) =
∇θf(θ)

f(θ)
(1)

As a result, after performing some mathematics (Moerland,
2021) on J(θ) we end up having:

∇θ Eπθ
[R(S,A)] = Eπθ

[R(S,A) · ∇θ log πθ(A|S)] (2)

Where we introduce a parameter that depends on the weights
inside the gradient. As a result, we push the derivative inside
the expectation and therefore, the effect is the push-up of
the density function with a magnitude R. When higher is
R harder is the push-up of the estimated probabilities. Con-
sidering that in our problem R is the discounted reward, the
gradient is pushed in the direction of higher reward. Since
we aim to maximize this value, we implement a gradient
ascend method.

In this algorithm, we use a discounted reward since we are
working with an episodic task. This is because rewards at
first timesteps have more influence than future rewards and
by learning these actions we can make our model learn faster
(Dewanto & Gallagher, 2021). As a result, rewards obtained
in further actions have a lower impact on the policy’s update.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2021

Algorithm 1 REINFORCE algorithm (Plaat, 2022)
Input: A differentiable policy πθ(a|s), parametrized by
θ ∈ Rd, learning rate α, number of epochs E and the
batch size M , discount factor γ.
Initialization: A policy network with randomly initial-
ized θ ∈ Rd

for e ∈ 1, . . . , E do
grad← 0
for m ∈ 1, . . . ,M do

Generate a trace h0 = {s0, a0, r0, s1, . . . , sT } with
policy πθ(a|s)
R← 0
for t ∈ T − 1, . . . , 1, 0 do
R← rt + γ ·R
grad + = R · ∇θ log πθ(at|st)

end for
end for
θ ← θ + α · grad

end for
return πθ(a|s)

The algorithm (see Algorithm 1) works as follows. We gen-
erate E epochs which will allow our model to converge.
Each epoch consists of M traces (i.e. batch size). This
allows us to reduce the variance of the updated weights
by taking the average of M episodes. For each trace
m ∈ 0, . . . ,M we start sampling a trace by following the
policy πθ(a|s). The discounted reward at each timestep t
is measured, and we push the weights of the policy to the
direction of the gradient. When higher is the discounted
reward, harder we will push the gradient. This emphasizes
actions with high rewards to have a higher probability of
being taken, allowing the model to learn. At each time step,
we compute the gradient for each of the M traces, where
each trace consists of T − 1 steps. We then accumulate
the gradients across all traces and update the total gradient
with a learning rate of α. We do not normalize (i.e. divide
by the batch size M) since we want to avoid higher batch
sizes requiring more episodes to learn. Finally, we update
the weights of the policy model θ by taking a step in the
direction of the gradient.

2.2. Actor-Critic

The Actor-Critic algorithm, as suggested by its name, con-
sists of two parts: the actor and the critic. The first is
responsible for choosing actions based on the current state
of the environment, while the latter evaluates the quality of
the actor’s actions. The policy function outputs a probability
distribution over possible actions, and the actor selects an
action according to this distribution. Since we are work-
ing with a discrete set of actions we will have a probability
mass function. On the other hand, the critic tries to learn

the value function for a given state. The critic’s output is
used to update the policy function in order to guide the
actor towards actions that result in a higher expected re-
ward. This approach essentially combines the advantages of
a policy-based (actor) with value-based learning (critic).

Policy-based methods can suffer from high variance that
can arise from two sources that we need to combat. The
first source of variance comes from the cumulative reward
estimate. We implement bootstrapping to mitigate it. We
only take into consideration the rewards from a fixed number
of consecutive steps (denoted as n) to calculate the target:

Qn(st, at) =

n−1∑
k=0

γkrt+k + γnVϕ(st+n) (3)

We then update the value function using a squared loss:

L(ϕ|st, at) = (Qn(st, at)− Vϕ(st))
2 (4)

while the policy is updated by gradient ascend:

∇θ = Qn(st, at) ·∇θ log πθ(at|st) (5)

The variance from gradient estimates can be countered using
the technique known as baseline subtraction. We calculate
the advantage function by subtracting the value function
from the value estimate Vϕ (output from the critic model)
as follows:

An(st, at) = Qn(st, at)− Vϕ(st) (6)

we then use the advantage function in the same way we
would use Qn to calculate the squared loss and the policy
gradient when updating our networks.

The full algorithm with bootstrapping and baseline sub-
traction can be seen in Algorithm 2. Our implementation
was done in a way that we can independently switch on
and off both the bootstrapping and the baseline subtrac-
tion, so we can analyze the impact of each one individually
and combined (Section 3.2.1). The algorithm works as fol-
lows. We generate E epochs, which consist of M traces
(i.e. episodes). For each trace, we start sampling the trace
following the policy πθ(a|s). Then, we calculate the target
and the advantage using Equations (3) and (6) respectively.
After each episode, we calculate the loss and update the
weights of both networks using Equations (4) and (5) after
the M traces, with the substitution of An instead of Qn as
it is written in Algorithm 2.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2021

Algorithm 2 Actor-Critic algorithm (Plaat, 2022)
Input: A policy πθ(a|s), parametrized by θ ∈ Rd, value
function Vϕ(s), learning rate α, number of epochs E and
the number of traces M , depth n, discount factor γ.
Initialization: An actor network with randomly initial-
ized θ ∈ Rd and a critic network with randomly initial-
ized ϕ ∈ Rd

for e ∈ 1, . . . , E do
for m ∈ 1, . . . ,M do

Generate a trace h0 = {s0, a0, r0, s1, . . . , sT } with
policy πθ(a|s)
for t ∈ 0, . . . , T − 1 do

Qn(st, at) =
∑n−1

k=0 γ
krt+k + γnVϕ(st+n)

An(st, at) = Qn(st, at)− Vϕ(st)
end for

end for
ϕ← ϕ− α ·∇ϕΣmΣt[An(st, at)]
θ ← θ + α · ΣmΣt[An(st, at) ·∇θ log πθ(at|st)]

end for
return πθ(a|s)

2.3. Entropy exploration

Both methods can easily get stuck in a local minimum if they
exploit certain actions (high probability for a certain action).
To deal with this problem, a certain degree of exploration is
required.

We implement the entropy regularization as an exploration
method for both the REINFORCE and Actor-Critic algo-
rithms. This method favors exploration by applying the
entropy regularization approach. An additional term is
added to the loss function. This ensures that the entropy
stays greater (i.e. avoid a peaked distribution on one action,
widening the distribution) (Plaat, 2022). As a result, the
model becomes more stable and avoids the policy to col-
lapse. The policy update equation for the REINFORCE and
the actor model in the Actor-Critic then becomes:

θt+1 = θt +R · ∇θ log πθ(at|st) + η∇θH[πθ(.|st)] (7)

where η ∈ R is a regularization parameter that defines the
degree of exploration and H[πθ(a|s)] is the entropy of the
policy, calculated as:

H[πθ(.|st)] = −
∑
i

pi · log(pi) (8)

Where pi is the probability of selecting action i at state st.
In the Actor-Critic method, the entropy is only added to the
actor loss, since it is the model that learns the policy and
computes the selected action.

3. Results
We manually selected the optimal hyperparameters based on
the best model performance. We realized that both methods
were very sensitive to hyperparameter tuning, especially for
the learning rate. After running different experiments and
tuning all hyperparameters, we found out that the ones that
worked best for the two approaches are the ones displayed
at Table 1.

Hyperparameter REINFORCE A/C
Batch size 10 4
n steps - 1

Learning rate 0.005 0.005 / 0.05
Entropy regularization η 0.1 0.01

Table 1. Manually selected hyperparameters for REINFORCE and
Actor-Critic algorithms that improve the model’s performance and
enable evaluation of the best action selection method using fixed
values. The learning rate of both the actor (first) and the critic
(second) are separated by a slash line (as stated in the header A/C).

To account for randomness, all plots represent the average
of 5 runs with a smoothing of window size of 51 applied.
The shaded area indicates the standard deviation at each step
across the five runs.

3.1. REINFORCE

Figure 1. Comparison of the reward over episodes for the REIN-
FORCE with different values for the entropy regularization param-
eter η. Better performance for higher values of η, reaching the best
output with η = 0.1.

Our initial evaluation was done on the REINFORCE algo-
rithm. After an extensive study of the impact of different
hyperparameters on the algorithm’s performance, we settled
on the values listed in Table 1.

However, we also recognized the importance of exploration
in achieving optimal performance. To address this, we tuned
the entropy parameter η to adjust the level of exploration.
Specifically, increasing η resulted in higher exploration,

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2021

while decreasing η reduced exploration. Figure 1 illus-
trates that the optimal performance for REINFORCE was
achieved with an entropy parameter value of η = 0.1. This
value allowed the algorithm to avoid collapsing into a local
minimum and enabled it to learn by widening the probabil-
ity distribution. However, despite achieving good results,
the algorithm still suffered from high variance, which is a
known limitation of REINFORCE. The results also showed
that increasing the exploration rate by raising η leads to bet-
ter performance. This has the cost of taking longer to reach
a stable plateau due to the low exploitation of the optimal
policy.

Nevertheless, the high variance in the results means that the
performance of REINFORCE is significantly dependent on
the run, and requires many episodes to reach the maximum
score. This limitation emphasizes the need for a more stable
and efficient algorithm, such as the Actor-Critic method.

3.2. Actor-Critic

The Actor-Critic algorithm addresses the limitations of
REINFORCE by combining a value-based approach with
policy-based learning and additionally incorporates tech-
niques such as bootstrapping and baseline subtraction to
enhance its performance. As a result, this method overcame
REINFORCE in terms of efficiency.

Figure 2. Comparing the reward over episodes for the Actor-Critic
with different values for the entropy regularization parameter η.
The performance is worse for values η < 0.01. For higher values
the performance does not vary.

Similar to our approach with REINFORCE (as described in
Section 3.1), we manually tuned the hyperparameters of the
Actor-Critic algorithm to optimize its performance. Since
the actor’s learning relies on the accuracy of the value pre-
diction provided by the critic, the two models are dependent
on each other. Accordingly, we set a higher learning rate for
the critic (αc = 0.05) than for the actor (αa = 0.005). This
strategy enabled the critic to learn more quickly, thereby
improving the accuracy of the actor’s policy learning.

In order to determine the optimal level of exploration, we
performed regularization tuning by setting different values
for the entropy parameter η. As shown in Figure 2, low
values of η (0.001 and 0.005) caused the agent to suffer
overfitting, leading to results where the agent got trapped
in a local minimum with high variance (as indicated by
the high standard deviation of results). However, values
η ≥ 0.01 enabled the agent to achieve the maximum reward
in all cases.

3.2.1. ABLATION STUDY

Finally, we studied the performance of the Actor-Critic
by deactivating some parts of the model (bootstrapping
and baseline subtraction) and we also compared it with the
REINFORCE method. The obtained results are displayed
in Figure 3.

Figure 3. Ablation study comparing the performance of the Actor-
Critic with four different configurations, adding and removing
bootstrapping and baseline subtraction and comparing with REIN-
FORCE. The best performance is observed when bootstrapping
and baseline subtraction are included. Adversely, when both tech-
niques are removed, the algorithm do not learn.

The performance of the Actor-Critic model with the best hy-
perparameter configuration was evaluated by removing cer-
tain components, such as bootstrapping or baseline subtrac-
tion, and compared with the best-performing REINFORCE
algorithm. As shown in Figure 3, the performance of the
different models was significantly distinct. The Actor-Critic
model with both bootstrapping and baseline subtraction sig-
nificantly outperformed the rest of the models, exhibiting
high stability and reaching the maximum reward after only
500 episodes. Removing either of these features introduced
high variance into the model, which is a common problem
for policy-based methods. Both bootstrapping and base-
line subtraction are designed to address this issue, and their
combination proved to be much more effective than either
of them alone. While the Actor-Critic model with boot-
strapping outperformed the one with baseline subtraction
and was slightly more stable, both models performed well

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2021

overall and outperformed the other models in the ablation
study.

The absence of both components in the Actor-Critic makes
the learning process ineffective. There could be various rea-
sons behind this, such as overfitting of the hyperparameters
to the complete Actor-Critic (the one including both compo-
nents) during tuning or the insufficient amount of training
episodes. However, with correct hyperparameter tuning and
additional training episodes, it is expected that the model can
learn effectively. In comparison, REINFORCE performs
significantly worse than Actor-Critic. Although it can reach
the maximum reward with η = 0.1 (Figure 1), it requires
more than 4,000 episodes to achieve this and exhibits higher
variance than the complete Actor-Critic. In Section 4, we
will discuss potential reasons for this outcome.

3.3. Environment Variation

We wanted to explore if our agent is able to learn different
variations of the default environment. We chose to work
with the Actor-Critic model, with both bootstrapping and
baseline subtraction as it was the best-performing model as
we discussed in Section 3.2.1.

Figure 4. Comparing Actor-Critic’s performance when varying the
speed of the falling balls on the environment. The agent suffered
from instability during training when a small speed was used. For
high speed although the agent learned the optimal policy, it was
impossible to catch all the balls because of their relative distance.

In our first experiment, we varied the speed of dropping
new balls. The default value of 1 means that each new
ball drops when the previous one reaches the bottom. By
changing the value of the speed we can manipulate the
environment to have an interval between the two balls with
a value rows // speed where the double / is the notation
for the floor division. One issue arises from the fact that
by varying the speed, we have more or less total number
of balls dropped for each episode, which means that the
maximum reward also changes. One way of solving this
issue and making the results comparable is to normalize
the rewards after the training by dividing them by the total

number of balls. We can, then, safely compare the values
of the fraction of caught balls that we calculated for each
different variation.

We trained our agent in the environment with speeds
[0.5, 1.0, 1.5], the total number of balls for each one was at
[18, 35, 62]. The fraction of caught balls at each training
stage can be seen at Figure 4. As we can see our agent had
the best performance in the default environment. Smaller
speed led to instability during training. In some instances,
the agent was able to learn the optimal policy, while in some
cases plateaued at lower rewards. One possible explanation
for this is the smaller number of events per episode did not
allow our agent to effectively train. The hyperparameters
also were tuned for the default environment, which might
also lead to underperformance in different variations. For
the increased speed we had great stability, and our agent
was able to learn the optimal policy. The reason the ratio of
caught balls was smaller than 1 doesn’t have to do with any
underperformance from the agent. Sometimes balls dropped
one after the other were too far away to get caught even
while following the optimal policy.

Figure 5. Comparing the performance of the Actor-Critic algo-
rithm when varying the size of the environment. Grids with smaller
sizes yielded better results. The agent was unable to learn the opti-
mal policy for the biggest grid size.

We also experimented with different sizes of the environ-
ment. As in the previous experiment, this also affected the
total number of balls dropped in each episode, so we decided
to compare the ratio of balls caught to the total number. The
default size for our environment is 7× 7, in which 35 balls
are being dropped. We varied it to 5 × 5 (50 balls) and
12×12 (20 balls). The results are shown in Figure 5. As we
can see for the biggest grid, our agent was unable to learn
the optimal policy. Our network was designed for smaller
grids and more events per episode, which lead to this under-
performance. For the other two grid sizes, our agent learned
the optimal policy. The only improvement that came from
the smallest grid size, was the fewer episodes which were
needed for the peak performance.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2021

We then switched to a non-square grid. We chose a grid of
size 14× 7 and also varied the speed of dropping new balls.
For consistency, we once again compare the ratio of caught
balls to the total number of balls dropped. The results are
shown in Figure 6. In the same plot, we also have the results
for the default grid size (7× 7), for the different values of
speed. As we can see our agent was able to learn in the non-
symmetric grid and only had issues when the value of speed
was low. Compared to the default grid size, the small value
of speed did not affect our agent that much. For the big
value of speed, our agent was once again able to learn the
optimal policy. This time it reached the fraction of caught
balls of 1, because, unlike the default grid size, it was able
to catch consecutive balls dropped on opposite sides of the
grid, because their horizontal distance was bigger this time.

Figure 6. The performance of the Actor-Critic algorithm in the
non-squared grid size for different speeds, compared with default
squared grid. The agent was able to perform at the same levels as
in the default environment.

Finally, we wanted to see if our network is able to train while
using a different input representation. The observation array
in the default environment is twice the size of the grid, with
one hot indicator for each ball that is present in the second
channel and one hot indicator for the paddle location in
the first channel. This type of observation type is called
“pixel”. We switched to the “vector” representation that uses
an array of length 3 and stores the x-location of the paddle,
and the x and y location of the ball. Due to this length limit,
this observation type was unable to handle multiple balls
being present at the same time. Therefore, we couldn’t use
speed > 1, because it would lead to multiple balls on the
grid. In Figure 7 we see the results of training using the
“vector” observation type, compared to the results we got
for the default “pixel” type. As it becomes clear the new
representation leads to higher instability. Our agent was able
to learn the optimal policy in some of the runs, while in some
of them, it got stuck in worse performance. This instability
has to do with the observation type being inept compared to
the default one. Our network was, also, developed for the
default environment, meaning some hyperparameters and

network architecture, are not so well-tuned for this change.

Figure 7. The performance of the Actor-Critic for the “vector” ob-
servation type compared to the default “pixel” type. The new
representation has more instability while training.

3.4. Model evaluation

We studied the resulting models by doing a model evaluation
after the training process. First, we trained each of the
algorithms with the best hyperparameters (Table 1). Then,
we saved each model. In the case of the Actor-Critic, the
actor was used as the model. Finally, the agent was tested by
running without learning. Due to the stochastic nature of the
algorithms, selection action policy can not be completely
exploitative. To minimize the exploration we used η = 0.
We performed 1,000 evaluations for both algorithms and
measured the returned rewards. For REINFORCE, the mean
reward was 32.22 and the standard deviation was 2.31. For
the Actor-critic the mean reward was 34.96 and the standard
deviation was 0.29. These results can slightly change due to
the stochastic nature of both algorithms.

4. Discussion
4.1. REINFORCE issues

As shown in Section 3, the REINFORCE algorithm suf-
fers from high variance in its results. This variance can
be attributed to two main factors. The first factor is that
positive rewards will always push the weights in the direc-
tion of those actions. To counteract this, it is necessary to
normalize different traces so that worse traces push down
the weights, even if the discounted reward is positive. This
is achieved through baseline subtraction, which normalizes
the results by measuring the advantage of an action with
respect to the mean. The second factor is related to the
high variance in the estimate of the cumulative reward. This
is because, in the initial epochs, many actions are chosen
randomly, which can lead to a wide range of outcomes. The
Actor-Critic algorithm solves both of the aforementioned
problems through the use of a second value-based model.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2021

The predicted value is then used to address the two main
sources of variance in REINFORCE.

4.2. Actor-Critic vs REINFORCE

As shown in the ablation study (Section 3.2.1) and in the
model evaluation (Section 3.4), the Actor-Critic algorithm
outperforms REINFORCE in terms of speed and stability
of learning. Specifically, Actor-Critic is able to reach the
maximum reward after∼ 500 episodes, while REINFORCE
requires over 4,000 episodes (Figure 1). It should be noted
that one reason for REINFORCE’s slower learning speed
is the use of a larger batch size, M = 10, compared to the
batch size of M = 4 used in Actor-Critic. This means that
the weights are updated after more episodes. The absence of
a normalization step pushes changes harder while reducing
the variance. As a result, the learning progress is slowed
down. We also tested lower batch sizes, but this resulted
in an increased variance that made the model even more
unstable. Therefore, we decided to stick with M = 10 and
balance the trade-off between speed and stability.

4.3. Entropy regularization

As shown in Figure 1 and 2, the entropy regularization pa-
rameter influences the performance of both algorithms. In
the REINFORCE algorithm, a better performance and a
slower learning is obtained with higher values of η, namely
η = 0.1. A higher exploration results in slower but better
learning of the environment. For the Actor-Critic, the differ-
ence between different parameter values is more subtle. For
entropy regularization values larger than 0.005, the speed at
which the algorithm learns is very similar, and the highest
performance is always achieved. A minimum amount of
exploration is necessary for the algorithm to learn the envi-
ronment, but after that point, it behaves more stable when
increasing η.

4.4. Environment variation

In Section 3.3 we modified the environment to test if the
actor-critic is able to perform and learn the optimal policy.
What we observed is that in the general case that is possible,
with some limitations. Our agent performed well when
we increased the speed of dropping new balls, and also in
smaller grid sizes. The performance was also great in non-
squared grids. We had some issues with smaller speeds and
bigger grid sizes, partly due to fewer events happening in
each episode. When we switched to the “vector” observation
type, our agent suffered from instability during training.

4.5. Conclusions

We can conclude that both REINFORCE and Actor-Critic
learn the environment, but differences in performance are

observed for both algorithms. REINFORCE is slower and a
higher exploration is needed to get the optimal performance.
The Actor-Critic algorithm using bootstrapping and baseline
is able to learn faster and achieve the optimal performance.
The Actor-Critic was also able to perform relatively well in
different variations of the default environment.

A. Bonus
A.1. Linear annealing

We studied the performance of both algorithms while ap-
plying the anneal function. This function varies linearly
the entropy regularization parameter from higher to lower,
i.e. applying more exploration at the beginning and then
more exploitation. This function was applied with two dif-
ferent percentages 20% and 60%, and from an initial value
equal to the optimal value (see Table 1) to a final value of
η = 0.001. The resulting performance is shown in Figure 8
and Figure 9. A better performance was obtained for the RE-
INFORCE algorithm when using the anneal function with a
60%. The next best performance was obtained with the en-
tropy regularization parameter η = 0.1. The Actor-critic’s
performance was optimum for both methods. However, the
optimal performance was obtained faster without using the
annealing function.

Figure 8. Comparing the performance of the REINFORCE algo-
rithm when applying the anneal function with different percentages
and different values of the entropy regularization parameter.

A.2. Clip PPO

Another policy-based method that exhibits good perfor-
mance is PPO, which includes many versions such as Clip
PPO or PPO-Penalty. It consists of a simplified derivation
of TRPO with better run time complexity (Plaat, 2022) by
doing first-order derivatives instead of second-order.

In this assignment we will focus on Clip PPO, which gen-
erates a different loss function to constraint the weights
update of the model and reduce the high variability of the

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2021

Figure 9. Comparing the performance of the Actor-Critic algo-
rithm when applying the anneal function with different percentages
and different values of the entropy regularization parameter.

parameter values θ (Schulman et al., 2017). This algorithm,
as the Actor-Critic approach, has two models (actor πθ and
critic πϕ). As a result, we define the loss for the actor as:

L(s, a, θold, θ) = min

(
πθ(a|s)
πθold(a|s)

A, g(ϵ, A)

)
(9)

where A is the advantage, ϵ is an hyperparameter that indi-
cates how far the new policy πθ can go with respect to the
old πθold and g(ϵ, A) depends on the advantage like:

g(ϵ, A) =

{
(1 + ϵ)A if A ≥ 0

(1− ϵ)A if A < 0
(10)

We update the rewards of the actor by computing the loss
measured as Equation (9). The critic model learns in the
same way as Actor-Critic. We evaluated this model for
different parameters of ϵ which defined how we clipped
the parameters. Lower values of ϵ restricted the update,
while high values allowed bigger updates of the parameters
θ. Figure 10 shows the performance of the model and the
comparison with the Actor-Critic. While the performance of
Clip PPO is comparable to the Actor-Critic, it tends to con-
verge to local minima (high variance in the results). Lower
values of the clipping parameter ϵ result in less aggressive
updates and thus reduce the likelihood of overfitting. How-
ever, this comes at the cost of requiring more episodes to
learn the optimal policy.

A.3. Cartpole environment

For some extra experimentation, we were interested to see
how our agent will perform in a different environment. We
chose the “Cartpole” environment from the gym module of
OpenAI (Brockman et al., 2016; openAI, n.d.) and trained
using the Actor-Critic model with bootstrapping and base-
line subtraction, which was our best-performing model in

Figure 10. Comparing the performance of the Clip PPO algorithm
with different values of ϵ with the same hyperparameters than
Actor-Critic (1). Low values of ϵ lead to better performance.

Figure 11. The average rewards per episode for the Actor-Critic
agent in the cartpole environment. The different lines represent
nodes in the hidden layer of both the actor and the critic and a
different value for the dropout layer. The performance was not
optimal and the agent had instability during training.

the “Catch” environment. While training for this environ-
ment we noticed some well-known patterns of overfitting.
The rewards per episode could rise to the maximum value
(500) and suddenly drop after a few episodes. To prevent
overfitting we tried different network architectures, with
no significant improvement in the results. We varied the
number of nodes in the hidden layer of both the actor and
the critic network and also added a “Dropout” layer. The
results can be found in Figure 11. As we can see our agents
suffered from great instability during training. Of the dif-
ferent architectures that were tried, the most promising one
was with 128 nodes in the hidden layer and a dropout value
of 0.2. Although we were not able to train our agent to reach
the optimal policy, the experiments have shown that it is
possible to adapt the same Actor-Critic agent in different
environments, with minimal changes. More careful tuning
of the different hyperparameters would yield better results.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2021

References
Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Dewanto, V. and Gallagher, M. Examining average and
discounted reward optimality criteria in reinforcement
learning. CoRR, abs/2107.01348, 2021. URL https:
//arxiv.org/abs/2107.01348.

Moerland, T. Continuous markov decision process
and policy search (lecture notes), 2021. URL
https://thomasmoerland.nl/wp-content/
uploads/2021/04/continuous_mdp.pdf.

openAI. Cart pole#, n.d. URL https://www.
gymlibrary.dev/environments/classic_
control/cart_pole/.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E.,
Saraiva, A., McKinney, K., Lattimore, T., Szepesvari, C.,
Singh, S., Roy, B. V., Sutton, R., Silver, D., and Hasselt,
H. V. Behaviour suite for reinforcement learning, 2020.

Plaat, A. Deep Reinforcement Learning. Springer Nature
Singapore, 2022. doi: 10.1007/978-981-19-0638-1.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms,
2017.

https://arxiv.org/abs/2107.01348
https://arxiv.org/abs/2107.01348
https://thomasmoerland.nl/wp-content/uploads/2021/04/continuous_mdp.pdf
https://thomasmoerland.nl/wp-content/uploads/2021/04/continuous_mdp.pdf
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/

