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Abstract

Observing an exomoon around exoplanets by using radial velocity data from
the host planet has proven to be a demanding task. We explore the possibili-
ties for such a discovery and the limitations posed by our current technology.
Our main focus is on the exoplanet β Pictoris b, which has proven to be a
great candidate due to its mass and orbital inclination. We analyze a tech-
nique for measuring radial velocities by using the cross-correlation of spectra.
We then simulate the process of an exomoon detection and propose possible
future observations that would allow us to achieve one. Lastly, we focus on
two sets of radial velocity data for β Pictoris b, which we attempt to link to
the possible existence of spots on the planet’s atmosphere.
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Chapter 1

Introduction

1.1 Exoplanets

The search for exoplanets is one of modern astronomy’s most exciting and
ambitious endeavours. It has enabled us to delve into the depths of our
universe and discover planets outside of our own solar system. Thousands of
exoplanets have been discovered, and each new one brings us one step closer
to understanding our cosmic neighbourhood.

The very first exoplanet to be discovered was in fact two planets orbit-
ing the PSR 1257+12 pulsar (Wolszczan et al., 1992). Scientists were able
to detect them by accurately measuring the pulses of the star using data
collected from the Arecibo radiotelescope. In 2020, the first potentially hab-
itable exoplanet was discovered (Gilbert et al., 2020) orbiting the star TOI
700. Studying the exoplanets can provide valuable insight into the formation
of our own solar system and the life cycle of stars.

In recent years our understanding of exoplanets has been revolutionized
by the development of sophisticated techniques for their discovery. These
techniques make it easier than ever to detect planets orbiting distant stars,
and in turn, understand the processes that form solar systems. Transit pho-
tometry, radial velocity, microlensing, and direct imaging are among the
most successful methods used to detect exoplanets, while other techniques
are gaining traction. Each of these methods has its own advantages and dis-
advantages and provides unique insight into the formation of exoplanetary
systems.

The method of direct imaging is relatively new compared to the other
ones. The first planet to be discovered using this technique was the planet
2M1207b which is orbiting around a brown dwarf (Chauvin et al., 2004; Mo-
hanty et al., 2007). Observations of exoplanets through direct imaging have
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Figure 1.1: All the discovered exoplanets with known mass and semi-major
axis of their orbit. The colours represent the different techniques that were
used to detect them. Data was obtained from exoplanets.eu (Exoplanet Team,
n.d.).

many advantages as it allows scientists to analyze the spectrum produced
by the planet and directly measure the elements that are present in its at-
mosphere. This method also allows the observation of planets at a greater
distance from the host star compared to the other methods. This effect
becomes clear by looking at Figure 1.1.

Telescopes both in space and on Earth have been used to capture direct
images of exoplanets, helping to unlock their secrets and giving us a better
understanding of the universe. By studying the light signatures of these
planets, astronomers can learn more about their atmospheres, orbits, sizes,
and compositions. In addition, direct imaging data can be used to test
current theories of planetary formation and evolution in order to develop
new models.

The mass and composition of the exoplanet play a significant role in the
potential habitability of the exoplanet. Although potential life in gas planets
can not be eliminated, scientists are currently focusing on rocky planets with
atmospheres. The planet’s atmosphere, surface temperature, and distance
from its parent star as well as the mass greatly influence the exoplanet’s
habitability.

The discussion for habitability should also include potential moons around
exoplanets. This opens the door to many more potential worlds where life
could evolve, including moons around gas giants like most of the exoplanets
that have already been discovered.
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1.2. EXOMOONS

1.2 Exomoons

An extrasolar moon is a natural satellite around an exoplanet and it is usually
referred to as an exomoon. Based on our own solar system exomoons should
be frequent, especially around gas giant planets like most of the exoplan-
ets that have been discovered. However, detecting them can be challenging
because they are much smaller than their host planets.

The formation of moons is a question that has been around for many
years. It is not yet clear how our own moon has been created and there are
many theories (René Heller, 2020) as to how multiple moon systems around
gas giants can be formed. All these theories greatly depend on the charac-
teristics of the host planet. Also, different moons can be formed through
different processes or even a combination of them.

One of the main theories is that moons form from the debris that is left
over after the creation of the planet (Alibert et al., 2005). This theory is
able to explain the formation of a single moon as well as multiple moons, as
observed at the gas giants of our solar system. It is also possible that planets
can capture small objects with their gravitational field and keep them in
orbit. Lastly, when two objects collide, especially in the early stages of the
formation of the planetary system, the leftover object can be captured by
the planet and form a moon.

As has already been mentioned, detecting exomoons is not an easy task.
There are many different techniques that have been suggested for exomoon
detection. According to René Heller (2020) there are three categories. The
first is “Dynamical Effects on Planetary Transits”, which includes the “Tran-
sit Timing Variation”(David M. Kipping, 2009a) and “Transit Duration Vari-
ation”(David M. Kipping, 2009b), meaning that the potential moon impacts
either when the planet will transit the host star, or how long will the transit
last.

The second category is “Direct Transit Signatures of Exomoons” which
includes techniques that measure the direct transit of the exomoon on the
host star. As the exoplanet transits the host star, the exomoon will also
contribute to the measured light curve. Depending on the position of the
moon at the time of the transit it can have an impact at the beginning or
the end of the curve.

A third category can be made for exoplanets that can be observed using
direct imaging techniques. For these planets, we can search for exomoons by
measuring the effects of the moon directly on the planet that it orbits. This
effect can be either a transit of the moon in front of the planet (R. Heller,
2016) or, as we explore in this project, the measured radial velocity of the
planet.
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1.3. β PICTORIS B

There are currently many exoplanets for which we have strong indications
of potential exomoons orbiting around them. Using many different methods
scientists have declared many exomoon candidates in the last few years. Two
of the most notable cases are Kepler-1625 b-i and Kepler-1708 b-i. The first
was announced by Teachey et al. (2018) based on three separate transits
between 2009 and 2013, using data from the Kepler telescope. In D. Kipping
et al. (2022), the team created a survey of 70 cool giants (gas giants at a
great distance from the host star) and announced a new exomoon candidate
in Kepler-1708 b-i. The survey also made use of data collected by the Kepler
telescope.

The habitability of exomoons is similar to the one for exoplanets. The
exomoon can be heated in various ways. The first is the reflected starlight
as described in the paper René Heller et al. (2013). In the same paper, they
also discuss tidal heating as another method for an energy source. Finally,
there is also thermal irradiation from the host planet to the exomoon, which
can also affect the potential habitability of the moon (R. Heller et al., 2015).

1.3 β Pictoris b

The young star Beta Pictoris (β Pic) debris disk was discovered in 1984,
sparking curiosity in the region, that eventually led to further investigations
and the 2008 finding of the gas giant exoplanet β Pic b (Bonnefoy et al., 2014;
Chauvin et al., 2012). The planet was the closest direct imaged exoplanet
to a host star at the time, with a semi-major axis in the (8 − 9) AU range
near the time of its discovery. The orbit is currently restricted to an orbital
semi-major axis of 9.93± 0.03AU .

The K-band spectro-interferometric observations from the GRAVITY in-
strument of the VLT, combined with new astrometry and Hipparcos/Gaia
data, indicated a mass of 12.7 ± 2.2MJup (GRAVITY Collaboration et al.,
2020), in agreement with the earlier mass determinations. Even if the num-
bers for the orbital eccentricity seem to be more dispersed, the values of
0.12+0.04

−0.03 (Nielsen et al., 2020), 0.15+0.05
−0.04 (GRAVITY Collaboration et al.,

2020) concur in favour of a non-circular orbit, which is unusual for a planet
of this size but can be explained by the presence of another giant planet in
the system. Eccentricity is reported to be 0.01+0.029

−0.01 by VLT/SPHERE data
post conjunction (Lagrange et al., 2019).

The radius of the planet was measured in Currie et al. (2013). They used
cutting-edge image processing techniques to evaluate fresh and old VLT and
Gemini high-contrast images of the planet in seven near-to-mid IR photo-
metric filters in order to provide measurements with a high signal-to-noise
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1.3. β PICTORIS B

Figure 1.2: Beta Pictoris’ close environment as seen in near-infrared light.
The outer part of the image depicts the reflected light on the dust disc, as
seen in 1996 with the ADONIS instrument on ESO’s 3.6 m telescope; the
inner part depicts the system’s innermost part, as seen at 3.6 microns with
NACO on the Very Large Telescope. The planet Beta Pictoris b can be seen
as a white spot orbiting around the centre of the dark disk, which is used
to hide the luminosity of the star. Image taken from the ESO public library
(European South Observatory, n.d.).

ratio. The results gave us a radius of 1.65± 0.06RJup

In a more recent paper (Lacour et al., 2021) researchers used a two-planet
model in order to determine the parameters of β Pic b alongside the newly
discovered β Pic c. They combined earlier astrometry of β Pic b with fresh
GRAVITY interferometer observations. Using Markov chain Monte Carlo
simulations in Jacobi coordinates, the orbital motion of β Pic b was fitted.
The final mass that was calculated is 11.90+2.93

−3.04MJup.
During this project, we mainly focused on the planet β Pictoris b, be-

cause it meets all the criteria to make such a detection possible. It is an
easily observable (using direct imaging) exoplanet with an edge-on orbit. We
also have in mind the possibility of being granted observational time from
the Crires+1 in the near future, to obtain enough radial velocity data on β
Pictoris b, to either make a detection or lower the threshold for potential

1European Southern Observatory, n.d.(a).
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exomoons around the planet.
In Chapter 2 we will discuss the radial velocity impact of moons on the

host planet by using both the example of Jupiter and β Pictoris b. Then in
Chapter 3 we will use two simulated spectra, in order to simulate and measure
a Doppler shift. After that, in Chapter 4, we will simulate the whole process
of exomoon detection in β Pictoris b by generating radial velocity signals and
measuring the parameters of the exomoon orbit, using a full Bayesian model.
The results will give us the expected thresholds of detections of that nature.
Finally, in Chapter 5 we will attempt to explain some real radial velocity
signals for β Pictoris b, obtained by two one-hour-long observational runs.
To achieve that we will simulate spots on the atmosphere of β Pictoris b and
analyze the radial velocity signals they produce.
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Chapter 2

Radial velocity of moons
around β Pic b

2.1 Methods

In this chapter, we will explore the radial velocities of potential moons around
the planet β Pictoris b. The parameters we use during this analysis are given
in Table 2.1. At the time of writing these are considered to be the best
estimations (Lacour et al., 2021; Currie et al., 2013; Exoplanet Team, n.d.).

Mass (Mj) Radius (Rj)

11.9 1.65

Table 2.1: The parameters of β Pic b used in this project. Both the mass
and the radius of the planet are given in Jupiter units.

As a reference point, we will use the moon of Jupiter, Io, and the effects
it has on the planet. The parameters of Io are given in Table 2.2.

Mass (M⊕) Radius (R⊕) Period (days)

0.01495 0.286 1.769

Table 2.2: The parameters of Io used in this project. Both the mass and the
radius of the moon are given in Earth units.

The analysis was done using the exoplanet module (Foreman-Mackey,
Rodrigo Luger, et al., 2021a; Foreman-Mackey, Savel, et al., 2021; Foreman-
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Mackey, Rodrigo Luger, et al., 2021b) and its dependencies (Agol et al., 2020;
Kumar et al., 2019; Astropy Collaboration et al., 2013; Astropy Collaboration
et al., 2018; D. M. Kipping, 2013; R. Luger et al., 2019; Salvatier et al., 2016a;
Theano Development Team, 2016). Originally it was designed to simulate
the orbits of exoplanets around their host star and generate the position and
velocities of both the host star and the exoplanet as a function of time. We
can however use a planet as the main body and the moon as the secondary
object by giving the correct parameters when calling the module. We can
then generate the data for the radial velocity of the star, which in our case
will be the planet.

We chose to simulate an exomoon around β Pic b that has the mass of
the Earth and a period of 10 days. This starting point was chosen in order
to give us an indication of the scale of radial velocities we should expect to
get. The case of Jupiter and Io was also used as an example within our own
solar system. For all the cases we assumed an inclination of i = 90 between
the normal to orbital plane and line of sight. We also assumed that the
orbits are circular, which we know is not true for Io (e = 0.004) but is a good
approximation and helps us be consistent when comparing it to our exomoon
example.

After that, we implemented many more simulations in order to get the
peaks of the radial velocity for each one. By looping over all the different
orbital periods we expect to be able to observe we get a picture of how the
radial velocity declines with respect to that. We also loop over the different
masses to visualise the effect of it on the radial velocity. As we are doing this
we are essentially mapping the peak radial velocity for all the different cases
that seem realistic for our scenario.

2.2 Results

The radial velocity caused by Io on Jupiter and the effect of a potential
Earth-mass exomoon around β Pic b are shown in Figure 2.1

The period of Io is much shorter compared to the potential exomoon that
we defined to have a period of 10 days and this is reflected in how many
peeks we get over the same period of time.

What is more interesting is the amplitude of the radial velocities for both
cases. Io has a much smaller effect on Jupiter compared to the potential
exomoon on β Pic b.

We can derive an approximate formula for the radial velocity of the planet
that is caused by the moon if we assume 90◦ inclination between the normal
to the orbital plane and the line of sight, as well as a circular orbit.
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Figure 2.1: The radial velocities of Jupiter (red) and β Pic b (green) that are
caused by Io and a potential Earth-mass exomoon respectively as a function
of time. The radial velocity is measured in (m/s) while the time is measured
in days.

From the conservation of momentum we have

Mvplanet = mvmoon (2.1)

where M is the mass of the planet and m is the one of the moon.
From the circular motion, we get

vmoon =
2πa

P
(2.2)

where a is the semi-major axis or in our case, the radius of the circular orbit,
and P is the period

From Kepler’s third law with the assumption that m << M

a3

P 2
=

GM

4π2
(2.3)

When we combine Equations (2.1) to (2.3) we get

vplanet =

(
2πG

M2P

) 1
3

m (2.4)
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The full equation that takes into consideration the inclination, and the
elliptical orbit and is not an approximation for m << M

vplanet =

(
2πG

P

) 1
3 m sin i

(m+M)
2
3

1√
1− e2

(2.5)

where e is the eccentricity of the orbit and i the inclination (angle between
normal to orbital plane and line of sight)

Jupiter - Io β Pic b - exomoon

0.815 (m/s) 5.87 (m/s)

Table 2.3: The radial velocities of Jupiter caused by Io and β Pic b caused
by a potential Earth-mass exomoon with 10 days period, calculated by using
Equation (2.4).
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Figure 2.2: A contour plot showing the peak radial velocity for different
masses and orbital periods of a potential exomoon around β Pic b. The
mass is measured in Earth masses while the orbital period is measured in
days. Radial velocity is in (m/s). Note that the x-axis showing the orbital
period is in logarithmic scale. The dotted line is representing the isoline for
500 m/s.
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For our case, all the approximations that went into Equation (2.4) are
correct so we can use it to explain the amplitude in Figure 2.1. Jupiter has a
smaller mass when compared to β Pic b which would lead to smaller radial
velocities. However, this is not the case due to the different masses and
periods of the moons. Io has a much smaller mass than the Earth, which is
the mass of our potential exomoon, and also the period of Io is much smaller
than the period of 10 days that we gave to the exomoon. The velocities that
we derive by using Equation (2.4) are shown in Table 2.3

We see that they are consistent with what we get in Figure 2.1 as we
would expect.

After that, we want to create a contour plot that will show the peak radial
velocity for many different combinations of values of mass and orbital period.
In Figure 2.2 we have the results for the planet β Pic b and the potential
exomoons we might be able to observe around it.

The resolution of Figure 2.2 is 50 × 50 meaning that we created 2500
different simulations in order to get this result. The masses we selected were
within the range of [0, 80]M⊕ which was split in 50, while the range of the
orbital periods was [0, 100]days which was also split in 50. We then took the
radial velocities of each possible combination of the two in order to have an
accurate contour plot with no inconsistencies.

The results as we would expect from both Equations (2.4) and (2.5) are
showing a decline of the peak of the radial velocity as we go from bigger to
smaller masses. The orbital period has the opposite effect, where we see that
the increase of it leads to smaller peaks of the radial velocity.

A recent analysis of new observations (Rico Landman, private commu-
nication) indicates that soon we should be able to have the errors of the
measurements of the radial velocity of β Pic b to be close to 500m/s. This
is the reason that we chose to indicate with a dotted isoline the level where
peak radial velocity is at 500m/s. This would mean that we should be able
to observe any exomoon with a combination of mass and orbital period above
this isoline but also even beyond that if we have enough observations.
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Chapter 3

Cross correlation of convolved
spectra

In this chapter, we will be working with two different model spectra of β Pic
b.

The first high-resolution model spectrum of beta Pic b was provided by
Dr Tomas Stolker. It was created as a best-fit from an atmospheric retrieval
and calculated at a λ

∆λ
= 106 .

A second spectrum was provided by Dr Paul Mollière of the Max-Planck-
Institut für Astronomie in Heidelberg, Germany. It is based on the best-fit
model of GRAVITY Collaboration et al. (2020). The method used during
this paper was to collect K-band spectro-interferometric data on β Pic b using
the GRAVITY instrument in conjunction with the four 8.2 m telescopes of
the Very Large Telescope Interferometer. They managed to obtain a high-
precision astrometric location of the planet and medium resolution (R =
500) K-band spectra of the planet. Although the purpose was to measure
the C/O ratio for the atmosphere of the planet, the spectrum can be reused
for different purposes.

3.1 Methods

In order to be able to make use of these high-resolution spectra we first have
to smooth them into a lower resolution. We can do that by rebinning the
original spectra.

In order to do that we need to define our new wavelength bins and take
the average flux of all the points that have a wavelength inside the lower and
upper limits of the bin. All the bins have an equal size which depends on the
number of bins we want to create.
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3.1. METHODS

The decision on how many bins to create is a compromise between wanting
to keep as much information as possible and wanting to have a spectrum
we can work with. We decided to go with 105 bins meaning our new low-
resolution spectra will each consist of 105 data points.

After we are done with rebinning our spectra we need to convolve them
using a normal distribution. In order to do that we first need to apply a
window function in order not to have any boundary problems near the edges
of our spectra.

We chose the cosine-tapered window, which is more commonly referred to
as the Tukey window because it is simple to implement and fits our purposes.
The formula of a Tukey window is

w(n) =
1

2
(1− cos

2πn

aN
) , 0 ≤ n ≤ aN

2

w(n) = 1 ,
aN

2
≤ n ≤ N

2

w(n−N) = w(n) ,
N

2
≤ n ≤ N

(3.1)

where N is the width of the function and a is the shape parameter of the
Tukey window.

The function is symmetrical as indicated by the last part of the Equa-
tion (3.1) and has a value of 1 between aN

2
and (2−a)N

2
and decays using a

cosine function towards the edges where the value goes to 0.
After applying this window on our rebinned spectra, we can convolve

them with a normal distribution. By doing this the shared peaks count is
generalized, which provides a more reliable indicator of spectral similarity.
This makes the convolved spectrum more useful for further applications and
analysis.

The process of convolution is done by shifting the array of the normal
distribution along the x-axis and taking the sum of the product of the two
arrays.

The formula for the convolution is:

(f ∗ g)(x) =
∫ x

0

f(κ)g(x− κ) dκ (3.2)

where f, g are the two initial functions and (f ∗ g) is the convolved function.
In our case of discrete convolution:

(f ∗ g)[n] =
M∑
0

f [m]g[n−m] (3.3)
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3.2. RESULTS

where M is the length of our array.
To perform the calculations we use the SciPy library (Virtanen et al.,

2020) which has the signal.convolve function using the “mode=’Same’ ” in
order to get the output at the same size as our initial spectrum (which is the
rebinned version), centred with respect to the ‘full’ output which would have
the size of the sum of the sizes of the two arrays.

The normal distribution array was produced with mean = 0 and std = 1
and was normalized so the sum of all the values is equal to 1. The length of
the array after trying different sizes was decided to be 1080.

After getting the convolved spectra, we can now use them in order to
simulate a Doppler shift caused by some radial velocity that the planet might
have. In order to do that we implement the function pyasl.dopplerShift from
the PyAstronomy library (Czesla et al., 2019).

We then attempt to calculate the velocity we used to Doppler shift the
spectra, by cross-correlating its shifted spectrum with the original. For the
cross-correlations, we use the signal.correlate function from the SciPy library.
After getting the result of the cross-correlation and adjusting the x-axis to
velocity units, the peak should be positioned at the velocity that is matching
the one that was used for the Doppler shift.

The non-relativistic definition of the Doppler effect is

z =
v

c
(3.4)

where v is the velocity of the object and z represents the shifting of the
spectral lines

z =
∆λ

λ
(3.5)

3.2 Results

In Figures 3.1 and 3.2 we can see the results of the processes of rebinning the
original high-resolution spectra and the convolution of the rebinned spectra
with a normal distribution.

The original spectra have 916,293 data points each, and as we can also
see from Figures 3.1 and 3.2 they are not evenly spaced. By rebinning them
we create an evenly spaced, across the wavelengths, data set, with 100 000
points which makes it easier to work with.

When we convolve the rebinned spectra with a normal distribution we are
essentially smoothing all the edges. This creates spectra that don’t have such
a huge dispersion. This is clearly illustrated in both Figures 3.1 and 3.2 as we
see the red line representing the convolved spectra is much more restrained
when compared with both the original and the rebinned spectrum.
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3.2. RESULTS

Figure 3.1: The high-resolution spectrum for β Pic b that was provided by Dr
Tomas Stolker with the rebinned and convoluted versions. The wavelength
is measured in µm while the flux is measured in (W m2 µm−1)

Figure 3.2: The high-resolution spectrum for β Pic b that was provided by
Dr Paul Mollière (based on the best-fit model of GRAVITY Collaboration
et al. (2020)) with the rebinned and convoluted versions. The wavelength is
measured in µm while the flux is measured in (W m2 µm−1)

18



3.2. RESULTS

1.5 2.0

Wavelength (µm)

4

6

8

F
lu

x
(W

m
2
µ
m
−

1
) ×10−15

Original Spectrum

Doppler Shifted Spectrum

−30−20−10 0 10 20 30

Velocity (107 m/s)

0

1

2

×10−24

−0.5 0.0 0.5 1.0

Figure 3.3: On the left panel: the convolved spectrum for β Pic b that was
created from the high-resolution spectrum provided by Dr Tomas Stolker in
green. The red line shows the shifted spectrum due to the Doppler effect
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the left. The vertical line represents the v = 0. On the small panel, there is
the peak of the cross-correlation that is clearly at a non-zero velocity, close
to 0.3× 107m/s.
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Figure 3.4: On the left panel: the convolved spectrum for β Pic b that
was created from the high-resolution spectrum provided by Dr Paul Mollière
(based on the best-fit model of GRAVITY Collaboration et al. (2020)) in
green. The red line shows the shifted spectrum due to the Doppler effect
with v = 3000km/s.
On the right panel: the result of the cross-correlation of the two spectra on
the left. The vertical line represents the v = 0. On the small panel, there is
the peak of the cross-correlation that is clearly at a non-zero velocity, close
to 0.3× 107m/s.
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In Figures 3.3 and 3.4 we can see the process of shifting the convolved
spectrum using the Doppler shift and then calculating the velocity by cross-
correlating the shifted with the original spectrum.

On the left, we find both the original and the shifted spectrum. We
notice the small shifting that has occurred due to the Doppler effect. The
velocity we used for the shifting was v = 3000km/s = 3 × 107m/s. This
velocity is of course much higher than the typical radial velocities we expect
an exomoon to be able to produce on β Pic b. It is however used as a starting
point to test that we have a way of measuring radial velocities by using the
cross-correlation technique.

The right part of Figures 3.3 and 3.4 is showing the result of the cross-
correlation of the shifted spectrum with the original. If the two correlated
spectra were identical we would expect to find the peak in the middle which
is located at v = 0. We, however, notice a slim shift of the peak from the
red line. The exact value of this dispersion is shown at Table 3.1

Measured (m/s) True (m/s)

1st Spectrum (3.009± 0.004)× 107 3.000× 107

2nd Spectrum (3.073± 0.004)× 107 3.000× 107

Table 3.1: The results of the cross-correlation for the two spectra with their
Doppler-shifted counterparts. The second column gives us the position of the
maximum correlation in m/s. In the last column, we have the true velocity
which we used to shift each spectrum.

As we can see, we are able to accurately calculate the velocity we used
to Doppler shift the spectra for both cases, with a small margin of error.
This means that we have created an efficient way to measure radial velocities
using cross-correlation. This method can also be used by adding noise to the
data in order to simulate real data.
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Chapter 4

Detecting simulated exomoons
around β Pic b

In this chapter, we will simulate moons around β Pictoris b. We will then
generate data in the form of radial velocity as a function of time that will
be caused on the planet by the presence of the moon in orbit. On the data,
noise will be added that is in agreement with the current and near-future
measuring accuracy of radial velocities on the planet.

The next step is trying to see if we can realistically detect such an exo-
moon around the planet given the noisy data that we generated.

4.1 Methods

For the simulation of exomoons we will once again use the exoplanet module
(Foreman-Mackey, Rodrigo Luger, et al., 2021b). When calling the module
we need to specify the parameters of our simulation. We do that by defining
the mass and radius of the central object to be equal to those of β Pic b.
The inclination of the orbit is equal to π

2
creating an edge-on orbit, meaning

the plane of the moon’s orbit around the planet is parallel to the line of sight
with the observer. Finally, all the orbits are defined with 0 eccentricities.

The mass and period of the orbiting object are defined differently every
time we run the simulation in order to create many different scenarios and
test the limits of the observable moons around the planet.

After creating the exomoon simulation, we want to generate the data of
the radial velocities. We do that by creating 25 linearly spaced different data
points across the span of 130 days. The reason behind this number is that
it is a realistic attempt to find exomoons around β Pic b. The best period
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for observations for β Pictoris b from the Paranal Observatory (VLT)1 is
between the months of September and December2. One possible proposal for
observing the planet would consist of 25 one-hour-long exposures that can
be accomplished during the second half of 2023. This gives us a bit more
than three months. It is also worth noting that having the observations too
far away from each other would make it more difficult to detect low-period
exomoons which are our primary target since they produce greater radial
velocities on the planet (see Figure 2.2).

The noise added to the generated data is based on the measuring accuracy
of radial velocities on β Pic b. In Chapter 3 we discussed the measuring
of radial velocities by cross-correlating the planet’s spectrum. Based on the
work of PhD candidate Rico Landman the current limit of observational error
can be lowered to 500m/s. This opens the doors for actually discovering
exomoons around the planet or lowering the mass and period boundaries
of potential existing exomoons in the event of a non-discovery. We are also
testing on less noisy data (250m/s), in order to examine potential near-future
discoveries and mass-period boundaries. We use a normal distribution to
generate realistic noise around the true value of the simulated data.

After generating the noisy data we attempt to detect the moon based
on the data with no prior knowledge of the orbit’s parameters except some
limits on the period. The limits on the period could not be avoided and
are also realistic based on the range of periods we could observe by having
one observation every 5.2 days and an observing span of 130 days. Also,
periods greater than 30 days are not producing radial velocities on the host
planet that could be detectable based on our discussion in Chapter 2 and
particularly Figure 2.2.

In order to detect the exomoon we use the package PyMC3 (Salvatier et
al., 2016b). Users of the Python application PyMC3 can fit Bayesian mod-
els using a variety of numerical techniques, most notably the Markov chain
Monte Carlo approach (MCMC). The exoplanets module easily integrates
with PyMC3 making it suitable for our usage.

We define the priors of our orbital parameters which are:

• period (range between 5 and 25 days)

• semi amplitude (normal distribution)

• eccentricity (range between 0 and 1)

1European Southern Observatory, n.d.(c).
2European Southern Observatory, n.d.(b).
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4.2. RESULTS

and then define an agnostic orbit based on the exoplanet module. When
we run our model, it optimizes for the different variables and then uses the
MCMC method to create samples. The number of iterations to tune and
the number of samples to draw was set to 1000, while the number of cores
and chains was set to 2. If the model is successful in detecting the exomoon,
the sampling will converge around the true period that we used to initially
create the noisy data.

To visualise the results we also use the corner.pymodule (Foreman-Mackey,
2016) which creates corner plots of different variables. A corner plot is an
illustration of different sample projections in high-dimensional spaces.

4.2 Results
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Figure 4.1: The radial velocity data generated from the exoplanet module
for a moon of 80 Earth masses and a period of 10 days with added noise
of 500m/s. The blue line represents the posterior, after fitting the Bayesian
model, with the 16th and 84th percentile.

We successfully performed many different simulations and exomoon detec-
tions. Each time we run the process of generating the radial velocity data,
adding noise, fitting the Bayesian model and then plotting for visualisation.
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4.2. RESULTS

In Figure 4.1 we can see the results of the Bayesian model fitting for the
case of a potential exomoon of 80 Earth masses in an orbit with a period
of 10 days. The noise added had an amplitude of 500m/s. The chain used
by the model accurately converged and the measured period was 10.09 days
with a standard deviation of 0.08 days. This means that we can accurately
detect an exomoon of this combination of mass and period if the accuracy of
the measured radial velocities is 500m/s.
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Figure 4.2: The corner plot of the orbital parameters of period and eccen-
tricity after fitting a Bayesian model for a moon of 80 Earth masses and a
period of 10 days with added noise of 500m/s. The vertical lines show the
16th, 50th and 84th percentile of the posterior.

For the same simulation, we also have the corner plot as shown in Fig-
ure 4.2. We can see the full posterior of the orbital period and eccentricity
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4.2. RESULTS

as well as the contour plot of both parameters. It is evident that there is
no direct correlation between the two parameters and also the posterior of
the orbital period has the shape of a normal distribution centred around the
best-fitting value of 10.090 days. The posterior of eccentricity is less accu-
rate but it also correctly favours lower values, as the original simulation was
created with no eccentricity.

In our next example, we have a case where the noise used had an ampli-
tude of 250m/s. The exomoon that was simulated had a mass of 60 Earth
masses and a period of 10 days.
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Figure 4.3: The radial velocity data generated from the exoplanet module
for a moon of 60 Earth masses and a period of 10 days with added noise
of 250m/s. The blue line represents the posterior, after fitting the Bayesian
model, with the 16th and 84th percentile.

In Figure 4.3 we can see the plot of the radial velocity as a function of time,
including the noisy data generated from the simulation and the posterior of
the Bayesian model that was fitted.

The corner plot for this fitting is shown at Figure 4.4. We can once again
see that the posterior of the orbital period has the shape of a normal distri-
bution centred around the best-fitting value of 11.53 days with a standard
deviation of 0.08 days. This value is a bit off when compared to the actual
orbital period of 10 days we used in the simulation it is however clear that
the Bayesian model can detect the exomoon around the planet, although the
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measurement of the period will not be accurate.
The posterior of eccentricity is accurate as it predicts low values with

strong indications of a 0 value, considering there was no eccentricity when
the initial simulation was built. On the contour plot, we can see the posterior
of both the orbital period and eccentricity in the same plot.
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Figure 4.4: The corner plot of the orbital parameters of period and eccen-
tricity after fitting a Bayesian model for a moon of 60 Earth masses and a
period of 10 days with added noise of 250m/s. The vertical lines show the
16th, 50th and 84th percentile of the posterior.

The process was repeated for 12 different cases. The simulation param-
eters as well as the measured orbital period with its standard deviation are
shown in Table 4.1. In some of the cases, the chains used for the Bayesian
model didn’t converge, which becomes clear from the significant value of the
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standard deviation compared with the actual measurement of the period.
Those cases have their results underlined.

Each case falls into one of four different categories based on the orbital
period of the moon (10 and 20 days) and also based on the amplitude of
the noise that was added (250 and 500 m/s). For each category, we tested
how low can the mass of a potential exomoon be, so that we are still able to
accurately detect it.

Mass (M⊕) Period (days) Noise (m/s) Pred. Period (days) S.D. (days)

80 10 500 10.09 0.08

60 10 500 10.10 0.10

40 10 500 15.19 17.6

170 20 500 20.16 0.32

150 20 500 20.19 0.33

130 20 500 31.92 49.5

60 10 250 11.53 0.08

40 10 250 10.09 0.08

20 10 250 12.92 14.0

90 20 250 20.16 0.28

70 20 250 20.19 0.35

50 20 250 32.49 39.1

Table 4.1: The final results of all the simulations that were fitted with a
Bayesian model. The first two rows show the mass (in Earth masses) and
the period (in days) that was used during the simulation. The third row has
the amplitude of the noise (in m/s) that was added to the radial velocity
data. The final two rows are giving the measured period from the Bayesian
model and the standard deviation (S.D.) in days. The cases where the chains
used by the model didn’t converge are shown by underlying the period results.

In Appendix A we can find the radial velocity versus time plots as well
as the corner plots for all the 10 different cases that were not shown in this
chapter.

In Chapter 6 we can also find a table that is summarising the result of
the experiment we ran in this chapter. Table 6.1 is showing the lowest mass
threshold below which we were not able to accurately detect the exomoon
for each of the four categories we discussed.
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Chapter 5

Explaining the RV data with
the Rossiter-McLaughlin effect

In this chapter, we will work with real data for the planet β Pictoris b. The
work for extracting the radial velocity data from the high-resolution spectra
was accomplished by Rico Landman.

The data were obtained from CRIRES+ observations, a high-resolution
spectrograph on the VLT1. The observations for β Pic b were done both on
November 11 and 13, 2022. The duration of each observational run was 1
hour. The data were reduced using pycrires (Stolker, 2021) and the official
esorex pipeline. The approach from Ruffio et al. (2019) was then used to
estimate the radial velocity of the planet.
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Figure 5.1: The radial velocity data for β Pictoris b that were provided by
Rico Landman. The two panels contain the two separate observational runs
on November 11 (left) and November 13 (right) of 2022.

1European Southern Observatory, n.d.(a).
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The result of this process is shown in Figure 5.1. The data consist of
two observational runs. For the first one, we get 17 data points (left panel
of Figure 5.1). For the second observational run (right panel), there are 20
data points.

We will analyze this data in a search for an explanation for the very short
time fluctuations that were observed. One plausible explanation could be
the existence of various spots on the surface of β Pic b. In this chapter, we
will explore if we can indeed match the data with a certain spot pattern.

The existence of spots on the surface of any astronomical object will create
a radial-velocity variation happening over the Doppler reflex motion, similar
to the one created by another object orbiting around our main astronomical
object (Triaud, 2018). This is known as the Rossiter–McLaughlin effect and
is mainly used in observations of exoplanets around stars. In our case, it can
be used to explain the peculiar radial velocity data of the planet β Pic b, by
assuming the existence of various spots that could match the observed data.

5.1 Methods

In order to simulate the spots on the surface of the planet we will use the
starry code package (Rodrigo Luger, Foreman-Mackey, Hedges, and Hogg,
2021; Rodrigo Luger, Foreman-Mackey, and Hedges, 2021a; Rodrigo Luger,
Foreman-Mackey, and Hedges, 2021b; Rodrigo Luger, Bedell, et al., 2019;
Rodrigo Luger, Agol, et al., 2019).

An array of spherical harmonic coefficients serves as the description of
surface mapping in starry. Spherical harmonics constitute a complete basis
on the surface of the sphere, just like polynomials do on the real number line.
If one expands to a high enough degree, any surface map can be described
as a linear combination of spherical harmonics.

We implement the starry package by declaring the parameters that cor-
respond to the planet we want to simulate, which are the mass and radius.
In our case, we want to simulate the planet β Pic b, for which we have the
radial velocity data. After doing that we can create spots on the surface of
the planet by declaring the size of the spot and its location (latitude and
longitude), as well as the equatorial velocity of the planet’s surface. We are
able to create multiple spots and after doing so, take the radial velocity data.

In Figure 5.2 we can see how the spots are being created using this pack-
age. For this particular example, we created 6 spots across the equator of
the planet.

The limitations of the starry package don’t allow us to declare as many
spots as we want. When setting up the simulations we could not retrieve any
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5.1. METHODS

Figure 5.2: Spot creation using the starry package. For this figure, we created
6 spots with 0 latitude and different longitudes. On the left, we see the
equirectangular view of the map while on the right panel we find the spherical
view of the planet with the spots.

meaningful radial velocity data for more than 11 spots. One other limiting
factor is the minimum size of these spots. The starry package documentation
makes it clear that the user can only create spots with a radius equal to or
greater than 15 degrees.

While these limitations don’t allow us to explore the whole range of pos-
sible spot arrangements on the surface of the planets we can still use the
library to get as much data as we can and then extrapolate to find a plausi-
ble number of spots that could match the data we have.
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Figure 5.3: The Fourier Transformation of the radial velocity time-series
shown in Figure 5.1. On the left panel, we have the first observational run,
while the second one is on the right panel.
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5.2 Results

Before simulating the spots on the surface of the planet we want to analyze
the radial velocity data. In Figure 5.3 we can find the Fourier Transformation
of the time series shown in Figure 5.1.

We can see that both observational runs have a similar frequency peak
at around 5.5 mHz.

We use the peak frequency of each one, in order to fit a sinusoidal function
on the time series. The fitting function uses the formula:

f(x) = f(t) = a× t+ b sin(c× t+ d) (5.1)

where a, b, c, d are the 4 parameters of our function.
We are mainly interested in parameters b, c which represent the amplitude

and angular frequency of our signal.
Before fitting the function we transform the time series to be centred

around 0, by subtracting the average radial velocity of each observational
run respectively. We also make the time series symmetrical around t=0.
These transformations will make it easier to fit our model and will not affect
the final results of the fitting.
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Figure 5.4: The radial velocity data for the first observational run with the
fitted function. The data were transformed by subtracting the average radial
velocity and were also made to be symmetrical around t = 0. The model
used for the fitting can be found in Equation (5.1).
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The results for both observational runs are shown in Figures 5.4 and 5.5.
We see that despite some inaccuracies the main shape of the data can be
explained with our simple model.

The values of the main parameters of interest are shown in Table 5.1. As
we already discussed parameters b, c represent the amplitude and frequency
of our signal, so we extract the values and errors after fitting our model in
both observational runs.
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Figure 5.5: The radial velocity data for the second observational run with
the fitted function. The data were transformed by subtracting the average
radial velocity and were also made to be symmetrical around t = 0. The
model used for the fitting can be found in Equation (5.1).

The angular frequencies for the two observations have a plausible overlap
on the error bars. This is a great indication of some mechanism that is
responsible for producing both main frequencies. Due to the rotation of β
Pic b, different surface features can appear and affect the radial velocities
that we observe, which would explain the minor difference.

The difference in the signal amplitude is even smaller and the overlap of
the error bars is even more clear. That is another indicator of one mechanism
responsible for both observed signals, with minor changes.

32



5.2. RESULTS

Ang. Frequency (mHz) Period (hours) Amplitude (m/s)

1st Observation 6.43± 0.61 0.271± 0.026 1.53± 0.37

2nd Observation 5.06± 0.74 0.345± 0.05 1.09± 0.33

Table 5.1: The values of the fitting parameters that correspond to the angular
frequency and amplitude of the signal after fitting our model (Equation (5.1))
for both observational runs.

After analyzing the radial velocity signals for the two observational runs
we can attempt to explain them using the starry package to create spots on
the surface of β Pic b.

We simulate multiple spots, all on the same latitude each time. Keeping
the number of spots fixed we change the latitude to measure the effects of
such change. We then increase the number of spots and repeat the process.

0 20 40 60

Latitude (degrees)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
er

io
d

(h
ou

rs
)

4 Spots

5 Spots

6 Spots

7 Spots

8 Spots

9 Spots

10 Spots

Figure 5.6: The period of the radial velocity signal as a function of the lat-
itude. The different colours represent a different number of spots that were
simulated. There is no significant difference in the period as the latitude
changes, while the number of spots is the only factor that affects the period-
icity.

After simulating many different scenarios we extract the period and am-
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plitude of each signal. In Figure 5.6 we can see how the number of spots
on the planet’s surface as well as the latitude that these spots can be found
affects the period of the radial velocity signal.

It is clear that latitude plays no role in the frequency of the signal. The
only factor that affects this periodicity is the number of spots on the planet.

We can use this fact to calculate the number of spots that can explain the
measured frequencies in Table 5.1, by extrapolating from our simulations.

In Figure 5.7 we can see the period of the signal as a function of the
number of spots. We use this data in order to fit a one-parameter inverse
function

f(x) = a
1

x
(5.2)

The function fits our data perfectly with a value of a = 8.1004± 0.0002.
This result is also shown in Figure 5.7 with the red line.
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Figure 5.7: The period of the radial velocity signal as a function of the
number of spots on the atmosphere of β Pictoris b. The red line represents
the fitted function, which uses the formula in Equation (5.2).

We can use the function we fitted on the simulated data to extrapolate to
the measured frequencies in Table 5.1. By doing so, we calculate the number
of spots on the surface of β Pic b that can in theory explain the observed
fluctuations of the radial velocities we observed.

In Table 5.2 we find the results from the extrapolation. We see that the
number of spots required to explain the two signals could potentially be the
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Measured Period (hours) Number of Spots

1st Observation 0.271± 0.025 27 - 33

2nd Observation 0.345± 0.05 21 - 27

Table 5.2: The number of spots that could explain the observed period of
the radial velocity signal in the two observational runs.

same as it is within the margin of error in the radial velocity measurements.
Also, this number is well beyond what could be simulated using our basic
model. It is however plausible that the existence of spots on the atmosphere
of β Pic b could explain the signals we are receiving and our work shows
that the scale of such phenomena is of similar magnitude and can produce
frequencies similar to the ones we are observing. Because the latitude of the
spots plays no role in the period of the change in radial velocity there is no
reason that all these spots have to be on the same parallel.

Trying to explain the amplitude of the two signals is an even harder task
due to the limitations that come from the starry package.
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Figure 5.8: Radial velocity amplitudes as a function of the size of the spots.
The colours indicate the number of spots that were used in the simulation.

In Figure 5.8 we see that the radial velocity amplitude increases rapidly
as the size of the spots increases. However, as is also shown in the same
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figure, the number of spots also plays a huge role in the amplitude in the
opposite direction. As the number of spots increases, the signal amplitude
decreases.

There is no way we can extrapolate in both directions (number and size
of spots) in order to explain the amplitudes we observed during the two
runs. We however note that it is not unreasonable to believe that such a
combination can exist.

Although we were not able to fully explain the radial velocity data by
assuming the existence of spots on the atmosphere of β Pic b due to our
limitations, we got many indications that the scale of such phenomena can
possibly factor in to produce the received signals. Other atmospheric phe-
nomena, such as zones with different rotational periods, can also be explored
and possibly play a role.
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Chapter 6

Conclusions

One thing that was very clear from the beginning was that searching for
exomoons by radial velocity is a very challenging task that tests the limits
of our current technology and detection techniques. We wanted to navigate
through all that and find potential planets where we could potentially achieve
that in the near future. Our work greatly focused on the planet β Pictoris
b. The reason is that it is a great target for collecting radial velocity data,
because of its location and the almost perfect edge-on orbital orientation
with respect to our planet.

In this current work, we started by laying out some useful and more gen-
eral information on exoplanets in general while focusing more on exomoons.
Our introduction (Chapter 1) ended with more specific information on β
Pictoris b, which was analysed throughout this work.

After that, we probed into the effects moons have on the radial velocity
of their host planets. In Chapter 2 we compared potential exomoons around
β Pictoris b and Io, the moon of Jupiter. One of the most interesting results
came in Figure 2.2 where we plotted the radial velocity on the planet as a
function of both the mass of the moon and its orbital period.

We also wanted to test the way we measure radial velocities, using simu-
lated spectra for β Pictoris b. Each spectrum was transformed and convolved
before applying a Doppler shift. We then used cross-correlation to success-
fully extract the velocity that was used for the shifting. The details of this
work are shown in Chapter 3.

In Chapter 4 we simulated the detection of an exomoon around β Pictoris
b from the beginning. At first, we created the simulated radial velocity data
for many different combinations of mass and period of the potential exomoon.
We then added noise to the data in order to test if a detection would be
possible under those conditions. After that, we used a full Bayesian Model
fit in order to measure the period and eccentricity of the simulated moon’s
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orbit.
The information we got from this experiment was crucial. We were able

to see how much mass an exomoon should have in order for it to be detected.
The answer greatly depends on the period of the moon because the further
away it is, the less impact it has on the radial velocity of the planet.

Period

Noise 10 days 20 days

250m/s > 20M⊕ > 60M⊕

500m/s > 40M⊕ > 130M⊕

Table 6.1: The four different categories that we used to simulate the radial
velocity data of the exomoons. For each category, we note the threshold for
the exomoon to be detectable using our Bayesian model.

In Table 6.1 we find the thresholds for the mass of the exomoons. For each
category (based on the noise and period), detection of potential exomoons
with a mass lower than the one given in this table is not possible with our
model. This consists of the lower limits, meaning that the chains used by our
Bayesian Model did not converge for the given masses. They did however
converge for every mass above this threshold.

One of the issues we faced during this work was the lack of real radial
velocity data on β Pictoris b that would be applicable to use for exomoon
detection. In Chapter 5 we worked with some preliminary data that came
from Rico Landman, consisting of two observational runs. The task was to
determine if the strange behaviour that was observed could be explained by
the potential existence of spots on the atmosphere of the planet, using the
Rossiter-McLaughlin effect. If this is successful it could vastly increase the
measuring accuracy of radial velocities for this planet, and also open the door
for similar work on other planets as well.

In our work, we showed that it is possible that spots can cause radial
velocity signals that can have the same frequency as the main frequency
we observed on the data we acquired. Explaining the amplitudes was not
possible due to the limitations of the packages we were using. We however
note that it is not unreasonable as we have shown the rapid growth of the
radial velocity signal amplitude with respect to the size of the spots.

To summarise in our current work we explored the potential of exomoon
detections while focusing more on the planet β Pictoris b, a perfect candidate
due to its orbit characteristics and observability. We tested our current and
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future limitations on the mass we would expect such detection to have. We
also collaborated with other scientists to try to explain the behaviour of
radial velocity signals, by simulating spots on the planet.
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Appendix A

Bayesian Model Fitting Plots

In this appendix, we include all the plots for the Bayesian model fitting that
we didn’t show in Chapter 4. Each page below has two plots for each of the
10 cases.

First is the radial velocity as a function of the time plot. The radial
velocity data from the exoplanet module, with additional noise, are included
in this plot. The posterior of the Bayesian model fitted is shown by the blue
line with the 16th and 84th percentiles. The second plot that is included for
each case is the corner plot of the orbital parameters of period and eccentricity
after fitting the Bayesian model. The vertical lines show the 16th, 50th and
84th percentile of the posterior.

Each case is labelled with the mass and orbital period of the simulation
as well as the amplitude of the noise that was used.
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Figure A.1: Period: 10 days, Moon Mass: 60 M⊕, Noise= 500 m/s
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Figure A.2: Period: 10 days, Moon Mass: 60 M⊕, Noise= 500 m/s
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Figure A.3: Period: 10 days, Moon Mass: 40 M⊕, Noise= 500 m/s
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Figure A.4: Period: 10 days, Moon Mass: 40 M⊕, Noise= 500 m/s
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Figure A.5: Period: 20 days, Moon Mass: 170 M⊕, Noise= 500 m/s
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Figure A.6: Period: 20 days, Moon Mass: 170 M⊕, Noise= 500 m/s
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Figure A.7: Period: 20 days, Moon Mass: 150 M⊕, Noise= 500 m/s

19
.5

20
.0

20
.5

21
.0

period (days)

0.
2

0.
4

0.
6

0.
8

ec
ce

n
tr

ic
it

y

0.
2

0.
4

0.
6

0.
8

eccentricity

Figure A.8: Period: 20 days, Moon Mass: 150 M⊕, Noise= 500 m/s
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Figure A.9: Period: 20 days, Moon Mass: 130 M⊕, Noise= 500 m/s
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Figure A.10: Period: 20 days, Moon Mass: 130 M⊕, Noise= 500 m/s
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Figure A.11: Period: 10 days, Moon Mass: 40 M⊕, Noise= 250 m/s
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Figure A.12: Period: 10 days, Moon Mass: 40 M⊕, Noise= 250 m/s
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Figure A.13: Period: 10 days, Moon Mass: 20 M⊕, Noise= 250 m/s
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Figure A.14: Period: 10 days, Moon Mass: 20 M⊕, Noise= 250 m/s
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Figure A.15: Period: 20 days, Moon Mass: 120 M⊕, Noise= 250 m/s
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Figure A.16: Period: 20 days, Moon Mass: 120 M⊕, Noise= 250 m/s
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Figure A.17: Period: 20 days, Moon Mass: 90 M⊕, Noise= 250 m/s

19
.5

20
.0

20
.5

21
.0

period (days)

0.
2

0.
4

0.
6

0.
8

ec
ce

n
tr

ic
it

y

0.
2

0.
4

0.
6

0.
8

eccentricity

Figure A.18: Period: 20 days, Moon Mass: 90 M⊕, Noise= 250 m/s
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Figure A.19: Period: 20 days, Moon Mass: 60 M⊕, Noise= 250 m/s
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Figure A.20: Period: 20 days, Moon Mass: 60 M⊕, Noise= 250 m/s
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