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ABSTRACT
Matter power spectrum can be used to study the way matter clusters in the Universe. Euclid will be able to measure
this clustering with unprecedented accuracy, using weak lensing measurements. Thus, it becomes more crucial to be
able to produce models with an accuracy of 1% or better in all scales k < 10h/Mpc. In van Loon & van Daalen
(2024) a proof-of-concept model that is able to utilize cross-power spectra to connect the power spectrum suppression
with the observed baryon fractions in a parameter-free way was presented. The model was able to predict the power
suppression for scales k < 8h/Mpc with an accuracy of at least 2%, in a total of 5 simulations from the cosmo-OWL
and BAHAMAS projects. We apply this model to the new FLAMINGO suite of large-scale cosmological simulations. We
find that the increased resolution and grid size allows us to model the connection between the baryon fraction and
retained mass of haloes more accurately which increased the accuracy of the model to 1% for most of the simulations
we tested. The many different hydro simulations of FLAMINGO with different intensities for the baryonic feedback allow
us to test the model in all these cases. We find that in the absence of jets, we are always within 1% of the true power
suppression, and otherwise at least within 2%.

Key words: cosmological simulations – power spectrum – cross power model – baryonic feedback – power suppression
– centre misalignment

1 INTRODUCTION

The study of the large-scale structure of the Universe is an in-
tegral part of modern cosmology, used to study the structure
on scales larger than that of a galaxy (Coil 2013). To explore
this topic, astronomers have used N-body simulations and
track the evolution and clustering of dark matter (Springel
et al. 2006; Angulo & Hahn 2022). These simulations allow us
to study how the small ripples on the almost uniform primor-
dial soup gave birth to the observed filament structure (Gao
& Theuns 2007). The formation of galaxies in this structure
happens inside the dark matter haloes (Wechsler & Tinker
2018; Cooray & Sheth 2002a). These haloes contain matter
which is decoupled from the cosmic expansion because of the
gravitational bound of the particles inside.

To study the way matter clusters in our Universe we can use
the matter power spectrum (Schneider et al. 2016). On large
scales, the linear perturbation theory (Press & Schechter
1974; Bond et al. 1991) can be used to model the power spec-
trum with high precision. On smaller scales, however, linear
perturbation theory is not enough to describe the collapse of
haloes and the formation of galaxies and ends up underesti-
mating the power. The analytical halo model (e.g. Peacock
& Smith 2000; Seljak 2000; Cooray & Sheth 2002b; Tinker
et al. 2008; Duffy et al. 2008; Giocoli et al. 2010; Semboloni
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et al. 2011, 2013; Zentner et al. 2013; Mead et al. 2015; De-
backere et al. 2020; Mead et al. 2021) is able to provide a
more accurate description of the matter power spectrum on
these non-linear scales.

One other way of obtaining the power spectrum in these
non-linear regions is with the use of cosmological simulations.
Full hydrodynamical simulations (e.g. Schaye et al. 2010; Le
Brun et al. 2014; Schaye et al. 2015; McCarthy et al. 2017;
Villaescusa-Navarro et al. 2021; Salcido et al. 2023; Schaye
et al. 2023; Kugel et al. 2023) are able to take into account the
effects of galaxy formation (Vogelsberger et al. 2020) and have
the advantage of being more accurate than any analytical ap-
proach. The drawback is the required computation time that
can get very high for the resolutions and grid sizes required
to make these simulations reliable. A different approach is to
use the results of N-body, dark matter only simulations and
modify the particle outputs. This method is called baryonifi-
cation (e.g. Schneider & Teyssier 2015; Schneider et al. 2019,
2020a,b; Aricò et al. 2020, 2021), and is more efficient than
the full hydrodynamical simulations, because dark matter
only simulations are less computationally expensive. These
different approaches have the same goal of accurately pre-
dicting the matter power spectrum in the non-linear regime.
A review of all these processes can be found in Chisari et al.
(2019).

In hydrodynamical (hydro) simulations, gas gets redis-
tributed in haloes or outside of them through a process known
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Figure 1. Clustering of mass in the dark matter only simulation
of FLAMINGO used in this project. The area shown is a small part
(15 Mpc across each dimension) of the full simulation, showing a
part of the filament structure. The projection is on the x-y plane,
distances are in Mpc. With blue, we plot the projection of the
R200m of all the haloes within those limits.

as baryonic feedback. The source of this feedback can be
traced to different mechanisms such as stars or supermas-
sive black holes. In van Daalen et al. (2011) it was shown
that this will also have an effect in the dark matter of the
haloes, through a process called “back-reaction” (Duffy et al.
2010). The power suppression that comes from this feedback
can be studied by considering the ratio between the power
spectrum in a hydro and a dark matter only simulation that
has the same initial conditions (Jing et al. 2006; Rudd et al.
2008).

With the recent launch of Euclid 1 we will be able to mea-
sure the matter power spectrum with higher accuracy than
ever before (Laureijs et al. 2011; Euclid Collaboration et al.
2019, 2021, 2024). It becomes increasingly more crucial to be
able to produce model power spectra to compare with in order
to take full advantage of the increased accuracy of the obser-
vations (Huterer & Takada 2005; Laureijs 2009; Hearin et al.
2012; Schneider et al. 2016). By comparing data from weak
lensing surveys with parameterized models we will be able
to infer the cosmological parameters (Bartelmann & Schnei-
der 2001; Joachimi & Bridle 2010; Kilbinger 2015), which
will bring more light to the tension between the early and
late Universe measurements of those parameters (Verde et al.
2019; Abdalla et al. 2022; Liu et al. 2024).

In van Loon & van Daalen (2024) a proof-of-concept model
that uses the cross-power spectra between matter inside the
haloes and the full simulation was presented that is able to
connect the baryon fractions to power spectrum suppression
without introducing any additional parameters. The contri-
butions to the full matter auto-power spectrum from both

1 www.esa.int/Science_Exploration/Space_Science/Euclid

within and outside of haloes have been studied in van Daalen
& Schaye (2015). The use of the mean baryon fraction to pre-
dict power suppression was first explored in van Daalen et al.
(2020). In this “resummation” model, the retained mass frac-
tion is used to scale the cross-power spectra of binned haloes
based on their mass. The non-halo cross-power contribution
to the full auto-power spectrum is also scaled appropriately
to account for the conservation of mass. The results for the
cosmo-OWLS (Le Brun et al. 2014) and BAHAMAS (Mc-
Carthy et al. 2017) simulations show that this model can
reproduce the power suppression for all scales k < 8h/Mpc
with at least 2% accuracy.

In the current work, we want to apply this model to the
new FLAMINGO suite of large-scale cosmological simulations
(Schaye et al. 2023; Kugel et al. 2023). The increased grid
size and resolution of these simulations allow us to more ac-
curately model the connection of the retained mass of haloes
to the baryon fraction. Moreover, the number of different vari-
ations of the parameters of the feedback mechanisms in the
hydro simulations allows us to test the accuracy of the model
in these scenarios.

The structure of this paper is as follows. In section 2 we
analyze and explain all the different methods we will use
throughout this work. There is a detailed explanation of how
we use the simulations and obtain our data, and how we use
the FFT algorithm to get the power spectra. There is also
an extensive analysis of the “resummation” model and how
we apply it in FLAMINGO. Then in section 3 we show and dis-
cuss the results we obtained in our analysis. We show all the
results for the different steps that are needed to apply the
model, and then at the end, we show the final performance
of the model. Some extra results are shown in appendices A
to D, to further investigate certain topics. In all these cases,
we discuss the consequences of our results and the decisions
we made throughout this work. Finally, in section 4 we sum
up all our findings and the different methods we have used
and offer some ideas for future research on this topic.

2 METHODS

In this section, we explain all the different methods we used
during our analysis.

2.1 Simulations

We use the FLAMINGO simulations (Schaye et al. 2023; Kugel
et al. 2023) to study the power suppression in the matter
power spectrum. The FLAMINGO simulations are a set of cos-
mological, large-scale structure simulations and are part of
the Virgo consortium for cosmological supercomputer simu-
lations. The resolution of these simulations depends on the
number of particles being used. For unresolved processes,
such as star or black hole formation, subgrid models are be-
ing used. In FLAMINGO the subgrid prescriptions for stellar
and AGN feedback are calibrated to the observed low-redshift
galaxy stellar mass function and cluster gas fractions in or-
der to guarantee that the simulations are realistic enough for
studies of large-scale structures. There is also a use of ma-
chine learning for calibration purposes, which is performed
independently for the three resolutions being used. For the
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Simulation N Particles

Dark Matter Only 18003

Fiducial 2× 18003

Weak AGN 2× 18003

Strong AGN 2× 18003

Stronger AGN 2× 18003

Strongest AGN 2× 18003

Strong Supernova 2× 18003

Stronger AGN + Strong Supernova 2× 18003

Jets 2× 18003

Strong Jets 2× 18003

Table 1. List of the different simulations from the FLAMINGO suite
that we will use in our analysis. The hydrodynamical simulations
have the same number of dark matter particles as the dark matter
only simulation but also include gas, stars, and black holes.

simulations, the SWIFT simulation code (Schaller et al. 2024)
was deployed on the Memory Intensive DiRAC facility.
FLAMINGO builds on top of previous simulations like OWLS

(Schaye et al. 2010), cosmo-OWLS (Le Brun et al. 2014), EA-
GLE (Schaye et al. 2015), and BAHAMAS (McCarthy et al.
2017). The VELOCIraptor (Elahi et al. 2019) subhalo finder
was used to identify structures like haloes and subhaloes in
the simulations. For the purposes of the FLAMINGO simulation
the spherical Overdensity and Aperture Processor (SOAP)
tool was developed, which can directly take the output of
the VELOCIraptor to calculate different properties of these
structures.

There are different box sizes and resolutions for the
FLAMINGO simulations. For the purposes of this analysis, we
will use the “L1_m9” simulations, which have a box size of
1000Mpc in each dimension and a resolution of 18003 par-
ticles for the dark matter particles. For each set of simula-
tions, there are multiple hydrodynamical simulations and one
corresponding dark matter only simulation. The different hy-
drodynamical simulations use different mechanisms and/or
intensities for the baryonic feedback, which will lead to dif-
ferent power suppression in the matter power spectrum (see
section 2.5). The dark matter only simulations can be used
as a reference to calculate the power suppression due to the
baryonic feedback.

An overview of the different simulations that we will use
in our analysis is given in table 1. We have in total 9 differ-
ent hydrodynamical simulations that we analyze. The fiducial
simulation uses the standard intensities for all the feedback
mechanisms and is used as the primary model for compar-
ing with all the other simulations. It does not necessarily
mean that these values are the most likely to be correct, but
they are the best starting point to compare from. Then we
have 4 simulations that vary the intensity of the AGN feed-
back. From weak to strongest, means that less or more gas
is ejected from the halo. This is crucial in our analysis as
it will have a huge impact on the power suppression that we
want to study. The next two simulations use a stronger super-
nova feedback than the fiducial simulation, with or without a
stronger AGN feedback. Finally, the last two simulations use
a different implementation of the AGN feedback. The fiducial
simulation uses thermal AGN with no jets. In contrast, the
jets simulations use AGN jets which distribute the gas that
is being ejected in a non-uniform way. They also eject the gas

Parameter Value

Ωm 0.306
ΩΛ 0.694
Ωb 0.0486
h 0.681
mb 1.07× 109 M⊙
mCDM 5.65× 109 M⊙
MCDM 6.72× 109 M⊙

Table 2. List of the values of the cosmological and simulation
parameters in the simulations we use that are relevant in our work.
The density parameters: Ωm for the total matter, ΩΛ for the dark
energy and Ωb for the baryonic matter. With h we denote the
dimensionless Hubble constant. The masses represent the initial
mass of: the baryonic particles mb, the cold dark matter particles in
the hydro simulations mCDM , and the cold dark matter particles
in the dark matter only simulations MCDM .

at greater distances, forming the astrophysical jets that we
are familiar with from deep sky images.

All the simulations use the fiducial cosmology, which uses
the cosmological parameters that are taken from Abbott et al.
(2022). In table 2 we give the values of some of the cosmolog-
ical parameters as well as the initial masses of the baryonic
and cold dark matter particles in the dark matter only and
hydro simulations. For each simulation, there are multiple
snapshots for different values of redshift. In our analysis, we
will only use the snapshots that correspond to a redshift of
z = 0. For a more detailed description of the different simu-
lations and cosmologies used in the FLAMINGO suite, we refer
to the original paper (Schaye et al. 2023).

2.2 Mass Fractions

The model that we use in this work (section 2.6) requires the
scaling of dark matter power spectra (section 2.5) to account
for the power suppression that is caused by the baryonic feed-
back that is present in hydrodynamical simulations. For this
purpose, we need to define some useful quantities that we will
use when applying the model.

In order to compare the different simulations, we need to be
able to match the different haloes in the different simulations
of the FLAMINGO suite. We are interested in matching haloes
for each hydro simulation with the corresponding haloes in
the dark matter only simulation. Luckily, this process is al-
ready done in FLAMINGO by comparing the particle IDs that
are part of the haloes in the different simulations. This pro-
cess is possible due to the starting conditions of the simu-
lations, which are identical for each set of simulations. The
result is a matching file that can connect the haloes in the
different simulations of the same corresponding box size and
resolution. For our purposes, we only use main haloes that
match in the different simulations, both ways. This means
that the matching file for the hydro simulation should point
to the corresponding halo in the dark matter only simulation
and vice versa.

The first quantity that we need is the fraction of the mass
that is retained in the hydrodynamical simulation, compared
with the dark matter only simulation. For a single halo, we
can define this quantity as:

fret =
Mhydro

MDMO
, (1)
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where Mhydro and MDMO are the masses of the halo in the hy-
drodynamical and dark matter only simulations respectively.
As it is clear from the equation above, this quantity takes
values between 0 and 1, in the presence of mass loss (e.g.
due to feedback from stars and AGN). It can also take values
greater than 1 if the mass of the halo in the hydrodynamical
simulation is greater than the mass of the halo in the dark
matter only simulation.

We can also calculate for each halo in a hydrodynamical
simulation the fraction of the total mass that is baryonic.
This is the baryon fraction inside the halo and is defined as:

fb =
Mbar

Mhydro
=

Mgas +Mstars +MBH

Mhydro
, (2)

where Mbar is the mass of the baryons in the halo, which
consists of gas, stars, and black holes (BH). The range of
values for fb is between 0 and 1, where 0 means that there
are no baryons in the halo and 1 means that the halo has no
dark matter.

In the absence of any physical processes that affect the
concentration of baryons, such as the baryonic feedback, we
expect:

fb =
Ωb

Ωm
, (3)

where Ωb is the baryon density parameter and Ωm is the
matter density parameter.

In an ideal case, during a process of baryonic feedback,
we would only have baryonic mass getting ejected from the
haloes. In this scenario, we would be able to use instead of
the retained mass fraction, the corrected baryon mass fraction
to scale the dark matter only power spectra. The corrected
baryon fraction was introduced in van Loon & van Daalen
(2024) and is defined as:

fbc =
1− Ωb/Ωm

1− fb
, (4)

where we take into consideration the initial baryon fraction is
defined as Ωb/Ωm from eq. (3) and that the cold dark matter
will be fully retained (fret/fbc = 1).

The ideal case described above, where fret/fbc = 1, fails
because the dark matter that is present in the haloes will
respond to the baryonic feedback, due to the gravitational
interaction between the dark matter and the baryons (van
Daalen et al. 2011). The gravitational potential of the halo
will change and dark matter, which only interacts gravita-
tionally, will also feel the impact of the baryonic feedback.
This will lead to a relaxation of the halo and additional loss
of mass, as the potential of the halo gets smaller and some of
the dark matter will no longer be bound to the halo.

We can model this effect by mapping the retained mass
fraction to the corrected baryon mass fraction. By doing this
we are able to use the baryon fraction as a proxy for the re-
tained mass fraction. The accuracy of this mapping will be
explored in section 3.2. This is very useful as the baryon frac-
tion can be measured from observations (e.g. Spergel et al.
2007; Hoekstra et al. 2005; Mandelbaum et al. 2006; Gavazzi
et al. 2007), while the retained mass fraction is not available
to us, as we have no direct way of measuring it observation-
ally.

2.3 Centre Misalignment

It is crucial for our analysis to have a reliable way of measur-
ing the centre of the haloes. The reason for that is that we
define the haloes as all the particles that are within a sphere
of an overdensity region, the centre of which lies at the centre
of the halo. When analyzing large overdensity regions, small
misalignments of the centre of the halo are negligible, as it
does not affect much the number of particles that are inside.
The same is not true for relatively large misalignments, which
can still cause issues in these large regions. This becomes in-
creasingly important when analyzing smaller overdensity re-
gions. In this case, even small misalignments can have a huge
impact, as it will completely change the profile of the region
we sample the particles from. Near the centre, we expect a
more dense region, than on the outskirts of the halo. This
means that when we do not sample the particles from the
correct region, we will underestimate the number of parti-
cles, leading to a wrong estimation of the mass of the halo
and its significance in the power spectrum.

For the FLAMINGO simulations, the centre of the haloes is
defined as the centre of potential and is calculated using the
VELOCIraptor subhalo finder. It does so by calculating the
binding energy of every single particle, taking into considera-
tion the gravitational potential and the kinetic energy of the
particles. It is then able to find the most bound one, the loca-
tion of which is defined as the centre of the halo. This way of
calculating the centre of the haloes should work perfectly in
theory. However, in practice, we have observed several cases
of wrong centre estimation. The extent of the problem, the
reasons behind it, as well as possible solutions, is still an open
question and more people are actively working on it.

Take for example the halo in fig. 2. For the dark matter only
simulation (DMO, blue points) we can see that the centre of
the halo (red cross) is where we expect it to be, based on the
profile of the particles. For the hydrodynamical simulation
(gas, dark matter, stars, and black holes with red, green,
yellow and black points respectively), however, we can clearly
see that the centre (green cross) is misplaced, and does not
correspond to the image we see. The centre is far more to the
left than what we would expect, based on the positions of the
particles in the hydro simulation, and this leads to a wrong
estimation of the particles that are inside each overdensity
region. In this particular case, we will get less than 10% of
the total mass we would get if the centre was correctly placed.
It is therefore clear how centre misalignment can have a huge
impact on our analysis.

Since it is beyond the scope of this work to develop a new
method to calculate the centre of the haloes, that is both
reliable and computationally feasible for a large dataset like
the FLAMINGO simulations, we need to find a way to limit the
impact it has on our analysis. We need, therefore, a probe
that can tell us whether the centre of a halo is misplaced or
not. The final goal of this is to cut out as many of the haloes
that have a misaligned center, as possible, without cutting
out the haloes that have a properly placed center.

In theory, one could look directly at the values of fret. If
we take the distribution of the values of fret for the different
haloes, we would expect that the haloes that have a mis-
aligned centre would be on the outliers of the distribution,
on either side. If the misalignment happens in the hydrody-
namical simulations, we would expect that Mhydro would be
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Figure 2. Example of the particle positions for a single halo in
the dark matter only simulation (DMO) and the fiducial simu-
lation (Gas, Dark Matter, Stars, Black Holes). We also note the
centres of the haloes and two different overdensity regions for both
simulations. The projection is done in the x-y plane, distances are
in Mpc.

underestimated, leading to a significantly lower value of fret.
On the other hand, if the misalignment happens in the dark
matter only simulation, we would expect that MDMO would
be underestimated, and fret would get much higher values.
This approach will work in terms of identifying the haloes
that have a misaligned centre, but it will also remove all the
cases of extremely high baryonic feedback, as well as the cases
of extreme increase in Mhydro. By doing this we would bias
our sample, leading to unreliable results. For this reason, we
explore two different probes; the mass profiles of the haloes
and the distance of the centre of potential from the centre of
mass of the halo.

2.3.1 Mass Profiles

The mass profiles of the haloes can be useful for identifying
the haloes that have a misaligned centre. As we have already
discussed, the region around the true centre of the halo is
usually expected to be denser than the outskirts of the halo.
This will give a typical mass profile that starts very steep and
then flattens out. On the other hand, if we pick the wrong
location for the centre of the halo, these areas will generally
be less dense, resulting in an atypical mass profile.

In our analysis, we calculate the mass profiles of the haloes
by simply taking the mass of the haloes for different radii.
The SOAP tool is able to calculate the mass of the haloes

for different overdensity regions, which we can then use to
calculate the mass profiles. We then normalize the mass pro-
files by the mass of the halo, to make them comparable. By
averaging over all the haloes in the simulation, we can then
calculate the average mass profile of the haloes. After that, we
can take the distance of each mass profile of every individual
halo from the average mass profile and create a distribution
of these distances. By setting a threshold for the distance, we
can then cut out those haloes. The results can be found in
section 3.1.1.

We also explore how the mass profiles are connected with
the distance between the centres of potential for the dark
matter only and the fiducial simulation. In principle we ex-
pect the two centres to have a certain distance between each
other, it is possible, however, that great distances can be an
indicator of some centre misalignment in either the dark mat-
ter only or the fiducial simulation. Of course in order to be
able to compare these distances for different haloes we need
to normalize them by the radius of a certain reference region
for each halo. For that purpose, we use the R200m, which we
define in sections 2.4 and 2.6.

2.3.2 Centre of Mass

One other potential probe for detecting haloes with a centre
misalignment is the distance of the centre of potential from
the centre of mass of the halo. The centre of mass is defined
as:

r⃗cm =

∑
i mir⃗i∑
i mi

, (5)

where mi is the mass of each particle and r⃗i is the position
of each particle.

In FLAMINGO, the centre of mass is calculated using the
SOAP tool and the Friends-of-Friends (FoF) haloes. The two
centres are not expected to coincide, as they use a different
definition, they should however be close to each other. If the
centres are far apart, it could be an indication of a centre
misalignment. It is important to always compare normalized
distances as we should expect larger haloes to have greater
distance between the two centres. For that, we always nor-
malize with the radius of a reference region (R200m). If we
calculate these normalized distances for all of the haloes, we
can then create a distribution and explore the outliers. A
threshold can then be set to cut out those haloes. The results
are shown in section 3.1.2.

2.4 Definition of Haloes and Bins

In the FLAMINGO simulations, the haloes can be defined as a
collection of particles that are gravitationally bound to each
other. This is enabled by the VELOCIraptor subhalo finder,
which is able to identify the haloes in the simulations. VE-
LOCIraptor utilizes the Friends-of-Friends (FoF) algorithm
to get members of the haloes and then uses a gravitational
unbinding algorithm to identify which of the particles are not
actually gravitationally bound to the halo and remove them.
This way of defining the haloes is, however, not really useful
for real-world applications, as there is no way of determining
which particles are bound to a real halo.

In order to make the haloes more useful for our analysis, we
need to define them in a similar way to what we are able to
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6 Koutalios & van Daalen

measure from observations. The information we have avail-
able in an observation is the number of particles that are
within a certain sphere, which we define as a halo. We can
also make a distinction between different overdensity regions,
which can be relative to the critical density ρc or relative to
the mean density Ωmρc. We can follow a similar approach
for the FLAMINGO simulations, by defining the haloes as all
the particles that are within a sphere of a certain overdensity
region. With this approach, we can better utilize the simula-
tions to match the observations.

This process is not done automatically by the FLAMINGO
simulations nor by the VELOCIraptor subhalo finder and the
SOAP tool. Therefore, we need to perform those calculations
ourselves. In theory one could very naively find all the cen-
tres of the different haloes and then calculate the distance of
each particle from the centre, selecting only the particles that
are within a certain radius. Using this approach, however, is
computationally unfeasible, as it would require a lot of time
to calculate the distance of every particle from each centre.
The SWIFTsimIO module (Borrow & Borrisov 2020; Borrow
& Kelly 2021) is able to read the output of the FLAMINGO sim-
ulations and can be used to divide the simulation into boxes.
When we select the centre of a certain halo, we can then only
consider the particles that are within the corresponding box
(or sometimes multiple neighbouring boxes). This is a much
more efficient way of selecting the particles that are within
a certain halo, as it requires much less computational time.
Using the SWIFTsimIO module this way was not possible, be-
cause of some limitations in the module. We therefore had to
draw inspiration from the module and write our own code to
perform the same task.

Now that we are able to define the haloes in an appropriate
way, we can split the haloes into different bins based on their
total mass. In our analysis, we always split the haloes into 10
different bins, which are equally spaced in logarithmic space.
We use the mass of each halo as it is given by the M200m

property of the haloes, which is the mass of all the parti-
cles that are within the overdensity region of 200Ωmρc. We
use this metric even when we are defining the haloes with a
different overdensity region, as a way to keep the bins consis-
tent. Previous work (van Loon & van Daalen 2024) has used
the M500c region for the same purpose, but we consider the
M200m region to be a more reliable metric, as it is a larger
overdensity region and therefore less sensitive to effects like
centre misalignment or others. The bins start from a mini-
mum mass of M200m = 1011M⊙ and reach a maximum mass
of M200m = 1016M⊙ with an equal logarithmic spacing. The
range of all the different bins we use in our analysis is shown
table 3.

2.5 Power Spectra

The power spectrum can be used to describe the distribution
of matter in the Universe. It measures the density fluctuations
on different scales, which can be used to study the large-
scale structure of the Universe. Under the hood, the power
spectrum is the Fourier transform of the correlation function
of matter and will be denoted as P (k). The wavenumber given
by k = 2π/λ, with λ being the physical scale. The power
spectrum can be calculated as:

P (k) = ⟨δ(k⃗)δ̃(k⃗)⟩, (6)

Bin Min log10(M/M⊙) Max log10(M/M⊙)

1 11.0 11.5
2 11.5 12.0
3 12.0 12.5
4 12.5 13.0
5 13.0 13.5
6 13.5 14.0
7 14.0 14.5
8 14.5 15.0
9 15.0 15.5
10 15.5 16.0

Table 3. List of the different bins we use in our analysis. We give
the log10 value of the minimum and maximum mass divided by
the solar mass (M⊙).

where δ(k⃗) is the Fourier transform of the density field δ(x⃗),
δ̃(k⃗) is the complex conjugate of δ(k⃗) and the brackets denote
the ensemble average. The density field is defined as:

δ(x⃗) =
ρ(x⃗)− ρ̄

ρ̄
, (7)

where ρ(x⃗) is the density at position x⃗ and ρ̄ is the mean
density over the whole simulation box. The shot noise term is
always present in the discrete Fourier transform of the density
field, we can however subtract it by considering that

SN = V

∑
i m

2
i

(
∑

i mi)2
, (8)

where V is the volume of the simulation box, and mi is the
mass of each particle in the simulation. If we are considering
a dark matter only simulation, where the mass of all the par-
ticles is equal (mi = m), the shot noise term can be further
simplified to:

SN =
V

Nparticles
. (9)

For our analysis, we are interested in two different power
spectra; the matter-matter auto-power spectrum and the
matter-halo cross-power spectrum. The distinction between
the two is that the matter-matter auto-power spectrum is the
power spectrum of all the matter in the simulation, while the
matter-halo cross-power spectrum cross correlates the matter
and the haloes we select each time from the simulation.

Given two different fields A and B, the cross-power spec-
trum can be calculated as:

PAB(k) = ⟨δA(k⃗)δ̃B(k⃗)⟩, (10)

where δA(k⃗) is the Fourier transform of the density field of
field A and δB(k⃗) is the Fourier transform of the density field
of field B. The cross-power spectrum is symmetric, meaning
that PAB(k) = PBA(k). In this regard, the auto-power spec-
trum is just a special case of the cross-power spectrum, where
A = B.

One must be careful when calculating the shot noise term
for the cross-power spectrum, as we only need to consider
the particles that are part of both terms in the cross-power
spectrum, which is the same as the particles in the haloes.

For both cases, we deploy the nbodykit module (Hand
et al. 2018) to calculate the power spectra. The module is able
to calculate the power spectra using the Fast Fourier Trans-
form (FFT) method (Cooley et al. 1969), which makes it very
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efficient for large data sets as is the case for the FLAMINGO
simulations.

In order to be able to accurately measure the spectrum on a
wide range with a satisfying resolution in all scales we employ
a technique of folding the real space. We do that by dividing
the full box into a number of cubicle pieces (we can denote
with N the divisions across each dimension) and superimpose
them into one, while rescaling the dimensions of the cube to
get the original size of the box (multiply the position of each
particle by N). We then take the power spectrum and multi-
ply it by the number of divisions across each dimension (N) to
get the correct power spectrum. By doing this we are able to
measure with precision smaller scales than before (higher val-
ues of k) without exponentially increasing the computational
time and memory needed. This technique is briefly discussed
in Jenkins et al. (1998) while it is also deployed in the orig-
inal SWIFT code which is written in C. For our purposes, we
had to adapt the technique in PYTHON, by writing our own
code. We can repeat this technique for an increasing amount
of folds until we get to scales that are shot noise-dominated.
By subtracting the shot noise from the power spectrum we
are able to push our measurements a bit further, to scales we
would not otherwise have access to. In the end, we are always
limited by the resolution of the original simulations.

When applying the power spectrum function in our simu-
lations we use a grid size of 256 for the mesh grid used by
nbodykit. We calculate the power spectrum using the origi-
nal grid and then we fold 6 times across each dimension. We
then increase the number of folds across each dimension in
powers of 6, 4 times in total (6, 36, 216, 1296). All of these
calculations are done in parallel, using the multiprocessing
module (McKerns et al. 2012), to further increase the effi-
ciency of the algorithm.

2.6 “Resummation” Model

We follow the model that was first introduced in van Loon
& van Daalen (2024) to model the baryonic effect on power
suppression. The model is based on the “resummation” of
rescaled cross-power spectra and the non-halo term of dark
matter only simulations. In dark matter only simulations
there are no feedback processes (like AGN) which makes a
big difference in the distribution of matter inside the haloes
and the resulting power spectra. To account for that one could
scale down the mass inside the haloes and increase the mass
outside of them. It is however more computationally efficient
to scale the power spectra to account for this change in the
clustering of matter. In this subsection, we will go through
the model and explain how we use it in our analysis.

We will start by defining the notation we will use in the
following equations. For continuity, we will be as close as pos-
sible to the notation used in van Loon & van Daalen (2024).
We denote as Pmm the matter-matter auto-power spectrum.
Haloes are defined as overdensity regions ∆ that can be rel-
ative to the critical density ρc (as in ∆ = 500ρc) or relative
to the mean density Ωmρc (as in ∆ = 200Ωmρc). Haloes are
split into different bins depending on their mass, and we will
denote each bin as i. Each halo bin has a fraction of the total
mass of the full simulation box, which is denoted as fM,i,∆.
The cross-power spectrum of each halo bin with the matter
is denoted as Pmh,i,∆ for the matter-halo power spectrum of
halo bin i with overdensity ∆. Similarly, the non-halo cross-

power term is denoted as Pmnh,∆ for the matter-non-halo
power spectrum. The ∆ term in the subscript of the cross-
power terms is used to denote the overdensity region we used
to define the haloes, as it will lead to different values for the
non-halo term.

Since it is assumed that the cross-power terms of the dif-
ferent halo bins are not normalized with regard to mass, the
linear halo bias for the large scales of the haloes in each mass
bin can be written as:

bi,∆ = lim
k→0

Pmh,i,∆(k)

Pmm(k)
. (11)

For our purposes, we will compute the bias for the different
halo bins by averaging the values of the above fraction over
the small k range of k < 0.1hMpc−1.

The auto-power spectrum of each simulation can always be
written as the sum of the cross-power spectra of the different
halo bins with the matter and the non-halo term:

Pmm(k) =
∑
i

fM,i,∆Pmh,i,∆(k) + Pmnh,∆(k). (12)

The equation above clearly shows the distinction of the two
different contributions to the matter-matter auto-power spec-
trum; the halo contribution and the non-halo contribution.

When applying the model, we only need to calculate all
these values for the dark matter only simulations. We then
need to properly rescale the cross-power spectra of the dark
matter only simulations to account for the mass loss due to
the baryonic effects, such as the feedback from stars and
AGN. At the same time, we need to rescale the non-halo
term of the dark matter only simulations to account for the
conservation of mass.

We can now examine how to rescale the cross-power spectra
of the dark matter only simulations, to account for this loss
of mass. As we are interested in the large-scale effects that
these processes cause, we can safely ignore any changes in the
profile of the haloes, such as star formation, and only consider
their effects on large scales. In reality, we only need to account
for the mass loss by using the fraction of the mass that is
retained in the haloes in the hydro simulation relative to the
mass of the same halo in the dark matter only simulation,
which is denoted as fret,i,∆ (eq. (1). As we have previously
mentioned (section 2.2) we map fret to fbc (eq. (4), which can
be directly observed. The results of the mapping are shown
in section 3.2.

We can write the corrected cross-power spectrum of each
halo bin with the matter as:

P ′
mh,i,∆(k) = fret,i,∆Pmh,i,∆(k). (13)

The mass that gets lost from the haloes is then added to
the non-halo term of the dark matter only, which ensures
that the total mass of the simulation is conserved. There are
many ways to redistribute the mass that gets lost from the
haloes to the non-halo term. It is tempting to just add the
mass uniformly across the simulation box, but this would be a
huge oversimplification as matter outside of the haloes is also
clustered, although relatively much less compared with the
matter inside the haloes. One other solution would be to just
add the mass to a linear power component. However, this is
also an oversimplification of the problem and is therefore not
sufficient as the matter that gets ejected from the haloes will
more likely end up clustering just around the haloes, giving
a more significant contribution to the power spectrum than
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8 Koutalios & van Daalen

a linear power component. A more realistic approach would
be to add the mass to the non-halo term. This assumes that
the mass that was already there had a similar distribution,
by clustering more significantly around the haloes. Lastly, we
also need to take into account that haloes are biased regions,
therefore when we remove mass from them we need to make
sure that the power at low values of k can still converge to the
initial value. With all these considerations in mind, we can
write the corrected non-halo term of the dark matter only
simulations as:

P ′
mnh,∆(k) =

P ′
mm(k)−

∑
i fret,i,∆fM,i,∆Pmh,i,∆(k)

Pmm(k)−
∑

i fM,i,∆Pmh,i,∆(k)
Pmnh,∆(k).

(14)

We can further simplify the equation above by dividing the
numerator and the denominator by Pmm(k) and take the low
k limit:

P ′
mnh,∆(k) =

1−
∑

i fret,i,∆fM,i,∆bi,∆

1−
∑

i fM,i,∆bi,∆
Pmnh,∆(k). (15)

We can now rewrite eq. (12) with the corrected cross-power
spectra and non-halo term:

P ′
mm(k) =

∑
i

fM,i,∆P ′
mh,i,∆(k) + P ′

mnh,∆(k), (16)

where P ′
mm is the corrected matter-matter auto-power spec-

trum, P ′
mh,i,∆ is the corrected matter-halo cross-power spec-

trum as defined in eq. (13), and P ′
mnh,∆ is the corrected

matter-non-halo cross-power spectrum as defined in eq. (15).
During this analysis, there was an assumption that was im-

plied, which needs to be corrected. The assumption was that a
fixed total matter distribution was maintained when we were
cross-correlating. To account for this we need to transform
the final total matter power spectrum one last time. We first
define the ratio of the corrected matter-matter auto-power
spectrum to the dark matter only matter-matter auto-power
spectrum as:

q∆(k) =
P ′
mm(k)

Pmm(k)
. (17)

We can now correct both of the components of the cor-
rected matter-matter auto-power spectrum by multiplying
them with the ratio defined in eq. (17):

P ′′
mm(k) = q∆(k)P ′

mm(k). (18)

The corrected matter-halo cross-power spectrum and the
corrected matter-non-halo cross-power spectrum are then de-
fined as:

P ′′
mh,i,∆(k) = q∆(k)P ′

mh,i,∆(k), (19)

P ′′
mnh,∆(k) = q∆(k)P ′

mnh,∆(k). (20)

This concludes the “resummation” model that we will use
in our analysis. For a more extensive analysis please refer
to the original paper in van Loon & van Daalen (2024). To
sum up, we start with a dark matter only simulation and
split the haloes into different bins based on their total mass.
We then compute the cross-power spectra of the different
halo bins with the matter and also calculate the non-halo
term. We then rescale each cross-spectrum for the mass that
is lost due to the baryonic feedback and redistribute it to

the non-halo term, to satisfy the conservation of mass. We
then sum all the corrected halo and non-halo contributions
to get the corrected matter-matter auto-power spectrum. We
then use it once more to calculate the ratio of the corrected
matter-matter auto-power spectrum to the dark matter only
matter-matter auto-power spectrum and use it to obtain the
final corrected matter-matter auto-power spectrum.

The model can also be used for multiple overdensity re-
gions. If we define two different overdensity regions, ∆1 and
∆2, with R∆1 < R∆2 , we can calculate the fraction of the
mass that was removed from ∆1 but not from ∆2 as:

fret,i,∆1,∆2 = fret,i,∆2 − fret,i,∆1 . (21)

We can now analyze the region between the two overdensity
regions. We denote with A the region between, that is part of
∆2 but not in ∆1. We can obtain the cross-power contribution
of the region A with the matter as:

Pmh,i,A(k) =
fM,i,∆2Pmh,i,∆2(k)− fM,i,∆1Pmh,i,∆1(k)

fM,i,∆2 − fM,i,∆1

. (22)

We can now calculate the corrected cross-power spectrum
of the region A with the matter as:

P ′
mh,i,A(k) = [fret,i,∆2fM,i,∆2 − fret,i,∆1fM,i,∆1 ]Pmh,i,A(k).

(23)

We now have the three different regions contributing to the
total matter-matter auto-power spectrum; the small overden-
sity region ∆1, the region A between the two overdensity re-
gions, and the region outside of ∆2, which is the non-halo
term. The first two regions combined are the halo contribu-
tions and are the same region as ∆2. We can therefore write
the corrected cross-power spectrum of each halo bin with the
matter, for ∆2, as:

P ′
mh,i,∆2

(k) = P ′
mh,i,∆1

(k) + P ′
mh,i,A(k). (24)

For the non-halo term (which is the region outside ∆2),
there is no difference in the analysis we previously did, when
we considered only one overdensity region. We can therefore
use the same equation as in eq. (15) to calculate the corrected
non-halo term of the dark matter only simulations.

Finally, we only have to recalculate the ratio of the cor-
rected matter-matter auto-power spectrum to the dark mat-
ter only matter-matter auto-power spectrum, as in eq. (17),
and use it to correct the corrected matter-matter auto-power
spectrum, as in eq. (18). For the individual contributions of
the halo bins and the non-halo term, we can once more use
the same equations as in eq. (19) and eq. (20) respectively.

The combination of two or multiple overdensity regions can
significantly improve the results of the model, as it allows for
a more detailed analysis of the mass loss due to the baryonic
feedback. Specifically, smaller overdensity regions will give a
more accurate representation of the mass loss on high val-
ues of k (small scales), while larger overdensity regions will
give a better account for the mass loss on low values of k
(large scales). The limitations come from the precision and
resolution of the simulations, especially on the small scales,
and the real-world measurements that we can obtain from
the observations.
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3 RESULTS

In this section, we explore the results of our analysis and
provide an explanation based on theoretical knowledge of cos-
mology and large-scale structures in the Universe.

3.1 Centre Misalignment

We will start by discussing the results on the issue of centre
misalignment. In section 2.3 we described why this problem
is crucial in our analysis. We also introduced the two probes
we will explore in our analysis and the role fret plays. We will
start by examining the mass profiles of the haloes and then
move on to the distance of the centre of potential from the
centre of mass of the halo.

3.1.1 Mass Profiles

We calculate the mass profiles for all the different haloes in
the fiducial simulation by taking the mass of the haloes for
different overdensity regions as described in section 2.3. To
make them all comparable we normalize each mass profile
by the mean mass of all the different regions. After that,
we take the mean over all the haloes to get the mean mass
profile. We are then able to calculate the difference between
the mass profile of each individual halo with the mean profile
and create a distribution of all these differences. To calculate
the difference we use:

dprofiles =
∑
i

|Mi − M̄i|
M̄i

, (25)

where Mi is the mass of each halo at each overdensity region
that we use to calculate the mass profiles, M̄i is the mean
mass profile of all the haloes in each region and the summa-
tion is over all the overdensity regions being used.

To explore how we can use the mass profiles as a probe
for centre misalignment, and if the distances of the centres of
potential can help in this, we plot the mass profiles of some
of the outliers in fig. 3. At the left panel, we have the mean
mass profile of all the haloes in the fiducial simulation and
we also plot all the mass profiles of individual haloes that
are outliers (2σ above the mean) using the distance of the
centres of potential. On the right panel we have the same
mean but this time we plot the haloes with a difference from
the mean mass profile above 2σ than the mean difference. We
also denote the standard deviation of the mean mass profile
using the grey area.

It is interesting to note how the mass profiles of the indi-
vidual haloes on the left panel of fig. 3 are in contrast with
the individual haloes on the right panel. For the latter case,
we can clearly see that there is something weird with these
particular haloes, as we would expect in a case of centre mis-
alignment. We see a big spike of mass in the bigger regions
(R200m or R50c) which can be explained if we have the wrong
centre. On the other hand, on the left panel, we can also
see that there are some cases that have abnormal mass pro-
files, usually haloes that have a small amount of mass at the
smaller regions and a big spike in the middle or right side of
the figure, however, most of the cases look relatively normal
in terms of their mass profile.

In fig. 4 we can see the distribution of the distances of the
mass profiles of all the haloes from the mean. We see a slightly

skewed distribution, which can be justified by the potential
existence of cases of misaligned centres that make some of
the mass profiles deviate more from the mean. We define 2σ
as the threshold after which we consider the halo to be an
outlier for this probe, for further exploration.

We also calculate the distance between the centres of po-
tential for the dark matter only and the fiducial simulation,
again as described in section 2.3. For normalization, we use
the R200m, similar to the previous analysis. We then create a
distribution of these distances and examine the outliers.

We can see the results in fig. 5. The distribution is very
slightly skewed, which, again, might indicate that there are
some cases of centre misalignment, that can make the two
centres of potential to have greater distances. Once more, we
define the 2σ distance from the mean of the distribution as
the limit after which we consider the halo to be an outlier for
this probe.

We now switch our focus mainly to the difference between
the mass profiles from the mean mass profile. Following the
discussion in section 2.3 we want to see if having a very dif-
ferent mass profile from the average, will translate into some
abnormal values in fret. For that, we create a distribution of
the fret values of all the haloes and compare it with the same
distribution for the outliers from the mass profiles as shown
in fig. 4. The results can be seen in fig. 6. On the left panel,
we have the distributions as we described, while on the right
panel, we take the density distributions to normalize both of
them and make it easier to compare.

As we can see in the right panel of fig. 6, the distribution of
the outliers is slightly more skewed, and is significantly wider
compared with the distribution for all the haloes. This means
that it includes relatively more outliers of either high or low
values of fret. From the left panel, however, it is clear that we
are still unable to get most of the outliers which is not ideal.

As a last result, we want to see if the outliers we detected
with all the different methods so far are able to find the same
haloes. To visualize that we use a Venn diagram with three
circles, one for the outliers in the distance between the centres
of potential, one for the outliers in the mass profiles and one
for the outliers in fret. For this instance, outliers in fret are
defined as the haloes that have fret > f̄ret + 2σ. This means
that we only consider the haloes that have an abnormally
high value of fret and not the ones on the low side of the
spectrum. We find the results in fig. 7. As we can see there
is not an agreement between the different methods. From
all the outliers using the mass profiles, we can calculate the
percentage of the haloes that are also outliers in fret as 4.76%.
The same percentage can be calculated for the outliers using
the distances of the centres of potential and the fret as 8.81%,
which is still only a small minority. We can finally consider the
case of combining the two and finding how many correspond
to a high value in fret, but the percentage of 7.55% is worse
than only using the distance of the centres of potential.

In appendix A we include some additional results that are
not shown in this section. Figures A1 and A2 are the mass
distributions of different halo populations for 2 different over-
density regions (200m and 500c respectively). The distribu-
tions for the two regions show many similarities, there is,
however, an interesting secondary peak for the 500c region
in the distribution of the outliers in the mass profiles. This
can be explained if this selection includes many haloes with
centre misalignment.
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10 Koutalios & van Daalen

Figure 3. Left panel: Average mass profile of the haloes for the fiducial simulation, with the shaded region denoting the standard deviation.
The mass profiles are taken by calculating the mass of the haloes for different overdensity regions and then normalizing them by the mean
mass of the halo. We also plot with red all the haloes that have a difference from the average of the distribution of the distances between
the centres of potential of the dark matter only and the fiducial simulation above 2σ from the mean. Right panel: Same as the left panel,
but with red we plot the haloes that have a difference from the average mass profile 2σ and above the average difference.

Figure 4. The distribution of the difference between the mass
profile of each individual halo and the mean mass profile of all the
haloes. All the mass profiles are normalized using the mean mass of
all the regions. The difference is calculated by taking the distance
of each point of the mass profile from the respecting point of the
mean mass profile as shown in eq. (25). With the red line, we note
the 2σ distance from the mean of the distribution, which is our
cut-off point for identifying outliers using this probe.

Figure 5. The distribution of the log10 distances between the
centres of potential of the dark matter only and the fiducial simu-
lation. With the red line, we note the 2σ distance from the mean of
the distribution, which is our cut-off point for identifying outliers
using this probe.

With all that in mind, it becomes crucial that we further
explore a different probe for detecting centre misalignment in
our simulations.

3.1.2 Centre of Mass

We now switch our focus to a different probe. As we discussed
in section 2.3 we can use the distance between the centre of
potential and the centre of mass as a way to identify outliers
and potentially, cases of centre misalignment. It is impor-
tant that we do this for both the dark matter only and the
hydro (in this case the fiducial) simulation. After taking the
distances for all the haloes, we can create two separate distri-
butions, one for the dark matter only and one for the fiducial.
We can find those results in figs. 8 and 9 respectively.

The two distributions in figs. 8 and 9 are very similar. They
are both slightly skewed which can potentially be explained
by the existence of haloes with centre misalignment. In both
cases, we use the 2.5σ distance from the mean of each distri-
bution to define the outliers.

We now want to test if the outliers we identified using the
distances between the centre of potential and the centre of
mass are indeed cases of centre misalignment. To test that
we will once again try to see how many of these outliers have
also abnormal values of fret. We can do that with two Venn
diagrams, where in both cases we plot a circle for each of the
outliers of the two distributions. In the first diagram, we also
plot a circle for the haloes with high values of fret (miscentred
in DMO, see section 2.3), while on the other for the low values
(miscentred in hydro). The results can be seen in fig. 10. Note
that we identify the outliers in the two distributions for the
distance between the centre of potential and the centre of
mass as the haloes that are above 2.5σ from the mean, while
for the fret we only use 2σ.

The picture we get in fig. 10 is much better than in fig. 7.
This time we have more haloes that were identified using
this probe to also have either very high or low values of fret
which is an indication that we are indeed able to detect many
cases of centre misalignment. As we were expecting, outliers
in the dark matter only simulation, correspond more to the
high values of fret than the small ones. This makes sense
as we know that cases of centre misalignment will lead to
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Figure 6. Left panel: Distribution of the values of fret. With blue, we have all the haloes and with red, only the haloes that have a
difference from the average mass profile of more than 2σ. Right panel: Same as the left panel, but both distributions are normalized, to
make them easy to compare. From the right panel we can see that with our probe, we are able to select more outliers relative to to the
distribution of all haloes. However, as we can see from the left panel, we are not able to catch most of them.

Figure 7. Venn diagrams of haloes that are identified as outliers
by some of the probes we use to detect the centre misalignment. We
include haloes that are identified as outliers by the mass profiles
of the haloes, haloes that are identified as outliers by the distance
of the centre of potential of the dark matter only simulation with
the centre of potential of the fiducial simulation and the values of
fret.

Figure 8. The distribution of the log10 distances between the
centre of potential and the centre of mass for the dark matter only
simulation. With the red line, we note the 2.5σ distance from the
mean of the distribution, which is our cut-off point for identifying
outliers using this probe.

Figure 9. As in fig. 8 but for the hydro fiducial simulation.

underestimation of the mass and in this case, MDMO, which
according to eq. (1) will lead to high values of fret. On the
other hand, outliers in the fiducial simulation will lead to low
values of fret for the same reason.

We can calculate the percentage of outliers in the dark
matter only simulation that also has a high value of fret as
20.05% which is an improvement over the other methods.
It is also clear that most of the cases of high fret can be
found in the outliers with the percentage being 50.86%. For
the fiducial simulation, we want to compare it with the low
values of fret. The sample however is very small so we can
only calculate the percentage of haloes that have low values
of fret that have been identified using the distribution for
the fiducial simulation. The percentage is 85.18%, which is of
course very high.

With all that in mind, we will keep this probe for future
use, when we want to cut haloes that might affect our results
because of issues with centre misalignment. This means that
we will cut the haloes that have values of distance between the
centre of potential and the centre of mass in either the dark
matter only or the fiducial simulation that are 2.5σ above the
mean of the corresponding distribution. We always need to
be careful when we cut haloes, to not significantly bias our
sample, so whenever we do that we always present the results
with and without the cuts and discuss the differences.
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Figure 10. Venn diagrams of haloes that are identified as outliers
by the distance of the centre of potential with the centre of mass
of the halo for both the dark matter only simulation (DMO) and
the fiducial (Hydro) simulation. To identify the outliers we take
the haloes that have a distance from the mean of the distribution
of more than 2.5σ. Top panel: Combined with haloes that have a
value of fret that is 2σ above the average. Bottom panel: Combined
with haloes that have a value of fret that is 2σ below the average.

3.2 Mass Fractions

We continue our analysis with the different mass fractions
that we explore. In section 2.2 we discussed the importance
of these fractions and how we can calculate them using the
matching files that are present in FLAMINGO. For the “resum-
mation” model, which we want to test, it is important to have
accurate values for the retained mass fraction fret which is
defined in eq. (1). This mass fraction, however, is artificial
as it can not be reproduced in real-world observations. What
we can measure is the baryon fraction fb which is defined
in eq. (2). Following the analysis in van Loon & van Daalen
(2024) which is also presented in section 2.2 we can easily
define the corrected baryon mass fraction fbc as in eq. (4).

What we now want is to be able to connect the values
of fbc to those of fret as we can measure them both in our
simulations. To achieve that we need to create bins of haloes,
based on their mass, calculate the average of both these values
and fit a relation, thus connecting fbc to fret. The bins are
created in a similar way as presented in section 2.4, with
small modifications for this specific use. Because we want the
results for different overdensity regions, we each time define
the bins based on the mass of the corresponding region. We
only use 8 bins, starting from M∆ = 1012M⊙, which means
that we start from bin 3 in table 3. Furthermore, some of the
bins in the higher mass bins, might not be populated with
enough haloes to produce robust results. In those cases, we

just combine those bins that have less than 10 haloes. We
also calculate the errors for fret and fbc in each bin, which is
the standard deviation of the mean.

To get the results we use 10 different hydrodynamical
simulations and the corresponding dark matter only simu-
lation. The first 9 are those shown in table 1, which have the
same corresponding dark matter only simulation, and we also
add the PLANCK simulation (which uses the PLANCK cos-
mology) and its corresponding dark matter only simulation,
which is different from the others.

It is important that we select an appropriate fitting rela-
tion that will yield the best fitting factors. In previous work
(van Loon & van Daalen 2024), a linear relation was fitted,
however, with the increased grid size of FLAMINGO, which in-
creases the sample size and reduces variance, we are able to
fit a more sophisticated relation as follows:

fret = c− b(1− fbc)
a, (26)

where a, b, c are the three fitting parameters.
The fitting was done using the optimize.curve_fit func-

tion from the scipy module (Virtanen et al. 2020). This func-
tion uses the non-linear least-squares method to do the fit-
ting. We are also able to use the errors on fret, which are used
as weights. The function performs the fitting by minimizing
the sum of the squared differences between the observed val-
ues and the values predicted by the model, with the weights
as the errors:

χ2 =
∑
i

(
fret,i − fpred

ret,i

σfret,i

)2

, (27)

where fret,i is the observed value of fret, fpred
ret,i is the predicted

value of fret using the model, and σfret,i is the error on fret,i.
The sum is over all the bins. After the fitting, we can also
calculate the root mean square error (RMSE) which is defined
as:

RMSE =

√
1

N

∑
i

(fret,i − fpred
ret,i )

2, (28)

where N is the number of bins. The RMSE is a measure of
the differences between the predicted values and the observed
values, with a lower RMSE indicating a better fit.

Following the results and the analysis in section 3.1 we will
present the results with and without excluding certain haloes
that we identified as outliers using the distance of the cen-
tre of potential with the centre of mass in either the dark
matter only or the hydrodynamical simulation. Those cases
were excluded because they might be cases of centre misalign-
ment, which will negatively affect our results. We expect that
excluding them will drastically improve the results in the cur-
rent analysis.

The results of fret as a function of fbc will be shown for 7
different overdensity regions. In figs. 11 and 12 we can find
the results for R200m and R500c. The results for the rest of
the regions are included in appendix B and figs. B1 to B5.

In fig. 11 we can find the results for the R200m overdensity
region. On the top panel, we have the results which include
all the haloes, while on the bottom panel, we have excluded
the haloes we consider to be cases of centre misalignment.
One first observation is that the fitting is great in both cases,
always within the 1% uncertainty. The error bars for both
figures are relatively small, allowing us to have great confi-
dence that our relation is indeed correct. It is also clear that
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Figure 11. fret as a function of fbc for the R200m overdensity
region. Every point on this figure represents one halo mass bin from
one of the simulations. We also fit the formula shown in eq. (26).
The grey area represents the 1% uncertainty. Top panel: using all
haloes from the simulations. Bottom panel: excluding haloes that
were identified outliers by using the distance between the centre
of potential and the centre of mass. We can see that this further
reduced the small errors that existed before the cuts. The fit looks
good for both cases.

excluding the selected haloes has improved the errors in each
bin, which points to our analysis in section 3.1 being correct.
The values of the fitting parameters for all the different re-
gions can be found in table 4 for the analysis using all the
haloes and in table 5 for the analysis without the outliers.

We switch now to the R500c overdensity region. The results
can be found in fig. 12. This time we see that the error bars
are bigger, which is expected because we are now getting re-
sults for a smaller region, near the centre of the halo, which
means that the mass values are less stable and on top of that
they are more sensitive to any errors in the position of the
centre. We can also see that the results have highly improved
when we exclude the selected haloes. On the top panel, there
are many data points, especially for high fbc values that are

Region a b c RMSE

R50c 1.45 4.05 1.00 0.003
R200m 1.45 4.15 1.00 0.003
R100c 1.49 4.70 1.00 0.004
R200c 1.58 5.91 1.00 0.005
R500c 1.78 9.71 1.00 0.011
R1000c 1.88 12.98 1.01 0.025
R2500c 2.74 94.96 1.01 0.018

Table 4. The fitting parameters for fret as a function of fbc fol-
lowing eq. (26) for the different overdensity regions, with all the
haloes (no halo cuts). We also include the RMSE to measure the
goodness of fit. We notice that the RMSEs for the smaller regions
are significantly smaller.

Region a b c RMSE

R50c 1.31 3.11 1.01 0.003
R200m 1.31 3.16 1.01 0.003
R100c 1.31 3.30 1.01 0.005
R200c 1.37 3.98 1.02 0.006
R500c 1.42 4.77 1.03 0.008
R1000c 1.59 6.92 1.03 0.016
R2500c 2.37 41.14 1.02 0.017

Table 5. As in table 4 but with the cuts for the distance between
the centre of potential and the centre of mass. We notice that
RMSEs have improved for the larger regions. The parameters of a
and b for the small regions have also notably changed.

clearly outside the 1% uncertainty region. This picture is dif-
ferent in the bottom panel, where the number of points out-
side that region has reduced, and so has the distance of the
points from the fitting line. Note that the fitting is redone
in each panel. For the RMSEs, we can once again look at
tables 4 and 5.

It is interesting to also note how the fitting parameters have
changed for the small regions. In those regions, the fitting is
very accurate in both cases (with and without the cuts) with
small values for the RMSE. However, it is noticable that the
value of parameter a, which is the exponent in eq. (26), has
changed from 1.45 (for R50c and R200m) to 1.31. Since there
are no significant changes in the error bars between the two
cases (cuts or not cuts), this can be evidence of biasing.

If we look closer at the two panels of fig. 11 we can see that
most of the points are now higher on the y-axis (fret, while
they remain in the same position on the x-axis (fbc. This
is an indication of biasing towards higher fret, by cutting
proportionally more low values.

One other interesting thing to note is how tightly all sim-
ulations follow the relation between fret and fbc. From the
analysis in section 2.2, this is something that we expected
since if dark matter did not respond to the changes of the
halo due to baryonic feedback we would have an exact match
between the two values (fret = fbc). This means that the
relation between the two should only depend on how much
baryonic mass was removed from the halo, and not on the
mechanism of removal. This means that despite different sim-
ulations causing different proportions of baryonic mass to be
removed from the haloes, the retained mass will always be
proportional to the value of fbc.

Following the analysis of the results that have been pre-
sented in this section, we will keep the fitting results of both
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Figure 12. As in fig. 11 but for the R500c overdensity region.
We can see that the errors that existed before the cuts have been
significantly reduced. The fitting has also drastically improved.

cases, with and without the halo cuts. When applying the
model we will compare the two results to see if it improves
the performance of the model and if there are indications of
biasing the sample, which is something we must be aware of.

3.3 Power Spectra

The power spectrum is a great tool to study the distribution
of matter and an important component of our model. In this
section, we will apply the methods we discussed in section 2.5
and analyse the results.

3.3.1 Auto Power

The matter-matter auto-power spectrum is the spectrum of
all the matter of the full simulation with itself. Some of these
calculations have already been performed in FLAMINGO using
the SWIFT code. For our purposes, we use the results for the

Figure 13. The matter-matter auto-power spectrum for the dark
matter only simulation (top panel) and the hydro fiducial (bot-
tom panel). With red, we have the pre-calculated spectrum from
FLAMINGO, while with green is the spectrum that was calculated
using our code. We see that our calculations precisely match the
pre-calculated spectrum.

dark matter only and hydro fiducial simulation, to make sure
that our code performs as expected.

In fig. 13 we can see the results for the dark matter only
(top panel) and the hydro fiducial (bottom panel) simulation.
With the red line, we have the spectrum as it was calculated
in FLAMINGO and with a green line we have our own imple-
mentation of the auto-power spectrum. We can see that the
agreement between the two is very precise on all scales, even
the ones that would be dominated by the shot noise, which we
have subtracted (as it was also already done in the FLAMINGO
spectrum). The resolution of the simulation allows us to go
to values of k higher than 100h/Mpc. For the hydro simu-
lation, because of the increased number of particles and the
fact that particles will cluster more on small scales, we are
able to go as high as k = 1000h/Mpc.

3.3.2 Cross Power

The matter-halo cross-power spectrum is the power spectrum
of the matter of a halo (or group of haloes) with the matter
of the whole simulation. For this analysis, we are mainly in-
terested in the dark matter only simulation, as our model
(described in section 2.6) uses that as an input. One very im-
portant consideration, that will also play a role when applied
to our model is the region we use to define the haloes. We
have obtained results for all 7 different overdensity regions
that have been used throughout the current work.
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Figure 14. The matter-halo cross-power spectrum for all the different bins for the dark matter only simulation. We also plot the matter-
matter auto-power spectrum and the total halo cross-power spectrum, which is the sum of all the cross-power components from the
different bins. The non-halo cross-power spectrum is calculated by subtracting the total halo cross-power from the auto-power spectrum.
Left panel: we define the haloes using the R200m. Right panel: we define the haloes using the R500c.

In fig. 14 we show the results when using the R200m (left
panel) and R500c (right panel) regions to define the haloes.
The plots show the cross-power spectra of all the different
bins as we discussed in section 2.4. The matter-matter auto-
power spectrum for the dark matter only simulation is also
shown in the plot. One can consider the different contribu-
tions to the total matter power spectrum. First, we have all
the different halo components, which are the different bins
we use in this analysis. This is the matter that is highly clus-
tered in small regions and is expected to dominate, especially
in high values of k. We calculate the total of this contribu-
tion by summing the cross-power spectra of all the different
bins. Finally, we also have the contribution from matter that
is not part of the haloes. This mass is not highly clustered
(although some clustering is expected, especially around the
haloes) and, therefore, we expect it to not be a dominant
contribution on smaller scales.

The results of fig. 14 confirm this hypothesis. If we look
at the results for the region R200m we can see that on small
scales (high k) we have a complete domination of the halo
cross-power contribution. On very large scales the halo and
non-halo contribution is around equal. When we define the
haloes using the R500c region, which is significantly smaller
than the R200m region, we can still see similar results. The
main difference is that we now have less mass in our haloes
which drops the significance of the cross-power contribution
and the non-halo spectrum now dominates for significantly
higher k than before. Still, on small scales, we return to a halo
cross-power domination of the total matter power spectrum.

We have performed the same calculations for all 7 over-
density regions we have discussed so far (R50c, R200m, R100c,
R200c, R500c, R1000c, R2500c). The results for the 5 regions
not shown here are very similar to the ones in fig. 14. Al-

though we chose not to show them, we will use those results
in the next section where we will apply the model for all the
different regions.

3.4 “Resummation” Model

The final piece of our analysis is of course to apply the “re-
summation” model as described in section 2.6. As we have
already mentioned in that section, we explore two ways of
using the model; one is by using only one set of cross-power
spectra (we will refer to this as the model for “one region”),
and the other is to use two sets with different regions being
used for the definition of the haloes (we will refer to this as
the model for a “combination of two regions”).

Following the discussion on the results for the fret as a
function of fbc (section 3.2) we will show the results using
the fitting results for both cases; with and without the cuts
for the centre of mass outliers. It is important to also note
that for the model we always use all the haloes, without any
cuts, regardless of which fitting results we use for fret. We
essentially only use the cuts to obtain a better fit but then
apply it to all the haloes. The drawback of doing this is that
the sample of haloes with the cuts is biased compared with
the full sample that we use for the model. This can cause
issues for the model if the biased sample is not able to gener-
alize well. On the other hand, the increased accuracy of the
fitting parameters can lead to better model results. For all
of that, it is important that we compare both results before
drawing some conclusions.
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3.4.1 One Region

In this part, we will discuss the results of the “resummation”
model using one set of cross-power spectra. In theory, we can
use any of the results mentioned in section 3.3.2, each will
give slightly different results, with better or worse match with
the true power suppression. As we have already discussed,
to study the power suppression we need the matter-matter
auto-power spectra from a hydro simulation and the corre-
sponding dark matter only simulation. If we have that the
power suppression is simply:

Phydro

PDMO
(k), (29)

where Phydro and PDMO are the auto-power spectra for the
hydro and dark matter only simulations respectively, which
are both dependent on the wavenumber k.

We can use our model as described in section 2.6 to basi-
cally model the auto-power of the hydro simulation. By doing
that we can get the expected power suppression by only using
the dark matter only simulation. It is important to note that
we also need the retained mass ratio fret, which we can get
using the corrected baryonic fraction (fbc) and the fitting re-
sults we discussed in section 3.2. Following the discussion on
that section we have two fitting results, one by using the halo
cuts we investigated in section 3.1 and one without any halo
cuts. For this part, we will show both results and compare
them. We will start with the results that are based on the
fits with the halo cuts and then move to the ones without.

In fig. 15 we have our first model results. The three panels
show from top to bottom the results for the R200m, R200c and
R500c regions. The figure includes the true power suppression
as well as the confidence intervals of 1, 2 and 5 % to help us
judge how well our model performs. For the R200m region we
can see that the model performs relatively well for the large
scales, and is within the 1% limit for k < 2h/Mpc. However,
it fails to produce a good match for the small scales. This is
something that we expect as the R200m region is relatively
large, and thus, doesn’t enable us to get a good precision for
the mass loss in the small regions.

We continue with the results for the R200c region, which
are shown in the middle panel of fig. 15. This region is now
smaller than R200m which should allow us to model the power
suppression better on smaller scales. As we can see from the
figure this is indeed the case, as the model is always within
5% of the true power suppression, even for large values of k.
We can notice, however, that the fit for the large scales has
gotten a bit worse, compared with the top panel.

The final region we show in this section is the R500c, which
is smaller than both the R200m and R200c regions. The model
results for this region are shown in the bottom panel of fig. 15.
We can see that the model is now within 2% of the true
power suppression on almost all values of k which is a notable
improvement from the results for R200c. Compared with the
results for R200m, the large scales are a bit worse, however,
the small scale results are now far superior. This is something
that we were expecting since as we already mentioned, using
smaller regions can help model the loss of mass for smaller
scales.

We will now switch to the model results using the fitting
results without any cuts. These results are shown in fig. 16
for the R200m, R200c and R500c regions (top, middle and bot-
tom panels respectively). We want to compare them with the

Figure 15. Model results for the hydro fiducial simulation using
the fitting results with the halo cuts. Top panel: for the R200m

region, middle panel: for the R200c region, bottom panel: for the
R500c region. The blue line shows the true power suppression with
the 1, 2 and 5 % uncertainty. With the red line, we show the
modelled power suppression. We can see that by using the R200m

region we can model well the power suppression on large scales,
with the R200c region the scales around 2 to 3 h/Mpc, and with
the R500c region the small scales.

corresponding figures for the previous results, where we were
using the halo cuts. We can see that they all show a slight but
noticeable improvement, especially in the areas we expect to
have a good fit. For the R200m (top panel in both figs. 15
and 16 we see an improvement on large scales. The same is
true for R200c (middle panels) and R500c (bottom panels) for
the small scales.

With this analysis, we can say that the halo cuts we dis-
cussed in section 3.1 do not improve the model results for one
region, on the contrary, they make them slightly worse. This
could mean that we have some level of bias that we intro-
duced when applying the halo cuts (for fret but not for the
cross-power spectra), which leads to these results. We will of
course keep using both of them when applying the model for
two regions to make our final assessment of which one has a
better accuracy.

We have also applied the model for all the other hydro
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Figure 16. As in fig. 15 but this time using the fitting results
with no cuts. We can see an improvement in fit in all three panels,
compared with the model results using the fitting results with the
cuts.

simulations and for all the 7 different regions we have used
so far. Some of those results are shown in appendix C with
the halo cuts and in appendix D without any cuts.

3.4.2 Combination of two Regions

In addition to the models where we use one set of cross-
power results for one region, we can also apply the model
using two sets that use a different region for the definition
of haloes. As we have already discussed, large regions are
better suited to describe power suppression on large scales.
On the other hand, smaller regions are better equipped to
measure the mass loss near the centre of the halo, and thus
provide a better probe for power suppression on small scales.
It, therefore, makes sense to combine one large and one small
region, getting the best of both cases. In this section, we will
analyze all 3 possible combinations of the 3 regions we have
shown in section 3.4.1 (R200m, R200c, R500c). We will keep
using the fiducial simulation to compare the different results.

We start fig. 17 where we see the model results when we
use the fitting with the halo cuts. From top to bottom, we

Figure 17. Model results for the hydro fiducial simulation, using
a combination of 2 regions. Top panel: using the R200m and R200c

regions, middle panel: using the R200m and R500c regions, bottom
panel: using the R200c and R500c regions. For these results, we
use the fitting results with the halo cuts. The blue line shows the
true power suppression with the 1, 2 and 5 % uncertainty. With
the purple line, we show the modelled power suppression. In all
three results, we see a great improvement over the model results
using one region. The combination of the R200m and R500c regions
(middle panel) show the best fit across all scales.

have the results for the combination of R200m and R200c, the
combination of R200m and R500c and the combination of R200c

and R500c. For all of these models, we can see an improved
accuracy over any of the models using only one region. For the
top panel, we can clearly see the influence of each individual
region we use. The shape of the model for large scales very
closely resembles the results we got when we were only using
the R200m region (top panel of fig. 15), while on the smaller
scales, it is almost the same as in the results we got for the
region R200c (middle panel of fig. 15). This is something that
we expected since we use the smaller region to probe the mass
loss near the centre of the halo and the large region for the
outskirts of the halo.

In the middle panel of fig. 17 we have the results for the
combination of R200m with R500c. These are the two extremes
out of the three regions we discussed so far, and as we can see
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Figure 18. Model result for the hydro fiducial simulation, using
the combination of R200m and R500c. For this result, we use the
fitting results without any halo cuts. The blue line shows the true
power suppression with the 1, 2 and 5 % uncertainty. With the
purple line, we show the modelled power suppression. We see that
the fit is clearly worse than the results with halo cuts, especially
for small scales.

the results show the best match to the true power suppres-
sion. When we compare it with the top panel, where we use
the R200c region for the small scales, it becomes clear that
the R500c region allows us to better follow the mass loss near
the centre than the R200c region which is relatively larger.

Finally, we have the results for the combination of R200c

and R500c, which are shown in the bottom panel of fig. 17.
We see that the fitting is great for the high values of k, which
is something we expected since it must be very similar to the
middle panel since both use the same small region (R500c).
However, for the small k values, the model is no longer within
1% of the true power suppression. The reason is that the
R200c region is not large enough to give great results for the
large scales.

From the previous analysis, we can clearly say that the
model that best matches the power suppression for all the
different scales in the hydro fiducial simulation is the one
that uses the combination of R200m and R500c. We can now
compare this and see if using the fitting results for fret with-
out the halo cuts will improve the model or not. In fig. 18
we have the results for the same two regions but without the
halo cuts. We see that in contrast to the results we got for
the one region model (section 3.4.1), this time the results
are worse than when we include the halo cuts. It is also in-
teresting to note that the model overpredicts the degree of
power suppression, contrary to any other model result, which
always underpredicts relative to the true power suppression.
This overestimation of the power suppression on small scales
leads to an overall worse match with the true power suppres-
sion. For the large scales, there is a slight improvement, it is
however not sufficient for us to consider this result as better
than the previous one. Although not shown here, this also
extends to the other simulations we have used throughout
this work.

One possible explanation for this behaviour is that we in-
deed have some biasing when we remove the haloes for the
fret fitting. We, however, compensate for that by highly im-
proving the fit in the small regions (like R500c), which without
the halo cuts suffered from high error bars and a poor fit. We
will discuss this further in section 4. For now, we will con-

tinue with the model results that gave us the best match to
the true power suppression, and that is the combination of
R200m with R500c, including the halo cuts.

For the final result, we have a collective plot of the model
with the true power suppression for all 9 hydro simulations
we used in this work, split over the two panels of fig. 19. For
all the different simulations we still use the same relations for
fret and fbc, only changing the fbc values, which we calcu-
late using the haloes of each simulation. We can see that our
model with the best regions greatly matches the true power
suppression over all scales and different degrees of baryonic
feedback. On the left panel, we have the AGN as the mech-
anism of baryonic feedback for different intensities. The sup-
pression is larger for the higher intensities, our model can
however give great predictions even on small scales, almost
always within 1% of the true values. The only exception in
this is the very small scales (k > 4h/Mpc) for the strongest
AGN simulation, but even in this case the model remains at
least within the 2% region of the true power suppression.

On the right panel of fig. 19, we have some different mech-
anisms, supernovae and jets, which our model can also de-
scribe the power suppression they produce with high accu-
racy. For the simulations using jets (jets and strong jets), we
see that the model is not within the 1% accuracy. Especially
for the strong jets, on large scales, the model is well outside
the 1% region. As we have already discussed, the jets use
also an AGN feedback mechanism, but instead of using ther-
mal AGN, they use AGN jets. This mechanism distributes
the mass non-uniformly around the haloes, which can cause
some different clustering to appear outside of them, which
is different from the way matter usually clusters outside the
haloes. Since our model uses the way the matter was clustered
outside the dark matter only haloes, to model the clustering
of mass removed from them, it is unable to take into consid-
eration some different ways of clustering. Jets are also able
to eject matter to greater distances than the thermal AGN
process. This means that we need bigger regions to better
probe the matter distribution on a large scale. However, ap-
plying the model using the R50c region in combination with
others did not improve the results compared with R200m. In
appendices C and D we show the one region models for this
simulation using the R50c and R200m regions.

From this analysis, we can say that the “resummation”
model was able to match the power suppression in all of
the hydro simulations from the FLAMINGO suite we have used.
When we use the appropriate regions (R200m and R500c) it
produces results that match the true values within 1% with
the exception of the two simulations using jets. The implica-
tions of these results will be discussed in the next section.

4 CONCLUSIONS

In this section, we will further discuss the results we analyzed
in section 3 and their implications. We will also propose fu-
ture steps for this work.

We have extensively discussed the issue of centre misalign-
ment in FLAMINGO. In section 3.1 we have explored two differ-
ent probes to detect such cases. The first one was the mass
profiles of the haloes. This method uses the general intuition
that the mass profile of a halo with a wrongly positioned cen-
tre should be different from the general trend of mass profiles.
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Figure 19. Collective plot of the model results for all 9 different simulations we used in this work. The model uses the combination of
R200m and R500c, which has shown the best match to the true suppression. The true power suppression is represented each time with a
solid line, while the model is denoted with a dashed line. We also include the areas of 1% uncertainty for each simulation. Left panel: the
fiducial, weak AGN, strong AGN, stronger AGN and strongest AGN simulations. Right panel: the strong supernova, strong AGN strong
supernova, jets and strong jets simulations. In general, we see a great fit for all the simulations.

The reason for that is that smaller regions are expected to
be denser than larger ones (if the centre is correct). If the
centre is misaligned, it will usually be in a less dense loca-
tion resulting in a profile with less mass for small regions
(compared with a typical profile) and a faster accumulation
of mass in larger regions. While our results have shown some
promising signs (see section 3.1.1 and also appendix A) we
were not able to use this probe for detecting many cases of
centre misalignment without also catching many haloes with
correct centres. We also attempted to combine this probe
with the normalized distance between the centres of the po-
tential of the dark matter only and hydro simulations, with
no improvement over the results.

The second probe that was used, was the normalized dis-
tance between the centre of potential and the centre of mass.
This probe proved to be far more reliable (see section 3.1.2)
and we were able to get a significant number of haloes with
wrong centres by cutting out the haloes that had a distance
between the two centres 2.5σ above the mean distance. The
results for all of the probes were always compared with the
outliers in the values of fret, which we have shown (sec-
tion 2.3) to be very sensitive to wrong positions for the centre
of the haloes, but can not be directly used to eliminate such
cases because it will highly bias the sample.

We have also performed a detailed mapping between the
values of fret and fbc. This is a crucial step for our model
as being able to obtain accurate values for fret will greatly
impact its final performance. For the fitting, we binned the
haloes of each simulation based on their mass and calculated
the average values for fret and fbc with the appropriate er-
rors. We performed the fitting independently for each of the
7 overdensity regions we used to define our haloes. Results
have shown to be stable for large regions with no significant
change for the fitting parameters for regions larger than the
R100c region. The RMSEs were also significantly lower for
those regions, which is something we expected since larger
regions are less prone to errors that can come from random
noise or systematics (like centre misalignment). We also per-
formed independent fitting for a sample of haloes where we
excluded the haloes that we previously defined as outliers
based on their distance between the centre of mass and the

centre of potential. These fitting results showed an improved
RMSE for smaller regions (R500c and R1000c) but not for the
smallest region (R2500c) where other sources of error are more
significant. For the larger regions there was no improvement
in the RMSE, we noticed, however, a change in the values of
the fitting parameters which as we mentioned are stable for
each of the two samples.

For the calculation of power spectra, we have developed a
PYTHON script to make the process more efficient. The script
utilizes a technique of folding the real space which is described
more extensively in section 2.5. The results in section 3.3 con-
firm that the code was implemented correctly by comparing
the auto-power spectra with the ones calculated using SWIFT.
We then proceed to calculate the cross-power spectra for all
the binned haloes in the dark matter only simulation and for
all the different regions we use to define the haloes. From
that, we can calculate the total halo cross-power spectrum
and subtract it from the auto-power spectrum to obtain the
non-halo cross-power spectrum.

The power spectra we have calculated are used to apply
the “resummation” model which was introduced in van Loon
& van Daalen (2024) and described in section 2.6. For the
model, we also use the fitting results for fret, with and with-
out the halo cuts as we have previously mentioned. We have
applied the model using only one region and also for two re-
gions. The results for two regions show a big improvement
over those with one region, which is something we expected,
as the two regions allow us to probe better the large and small
scales at the same time, by choosing the appropriate regions.
Interestingly, for the results with one region, we observed that
the halo cuts in the fret fitting have decreased the accuracy
of the model. The reason behind that is probably the biasing
of the sample when removing certain haloes. Further explo-
ration on this topic is still needed, as to what caused this
biasing, if, for example, we removed a proportionally larger
percentage of massive haloes. Nevertheless, this biasing did
not highly affect the results we got for the model using two
regions. In this case, the results using the fret fitting with
the halo cuts show an improvement over the ones with no
halo cuts. The improved fitting accuracy for the small re-
gions probably played a more crucial role in this case as it
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allowed us to, more carefully, probe the power suppression in
the small scales.

In total, we used 9 different hydro simulations in our anal-
ysis. The simulations we used varied the intensity of differ-
ent baryonic feedback mechanisms. The fiducial simulation is
used as the basis from which we can compare all the others.
For all of them, we find that our model performs relatively
well. With the exception of the two simulations using jets
and the very small scales of the strongest AGN simulation,
we find that all the other models are able to be within the 1%
accuracy region of the true power suppression. For the two
simulations using jets, we see that our model had its worst
performance. For the jets simulation, we notice a mismatch
in the very small scales (k > 4h/Mpc), similar to what we
got for the strongest AGN simulation, and also on the large
scales. For the strongest jets, the mismatch in the large scales
is even more pronounced, although the performance in small
scales is almost perfect. The reason behind this inaccuracy of
the model in these particular simulations has to do with the
physics of the mechanism itself. These simulations use AGN
jets instead of thermal AGNs which are used in all other sim-
ulations. Jets are known to distribute mass in a non-uniform
way and also expel mass at greater distances than all the
other mechanisms. Our model uses different regions to probe
different scales, however, none of the available overdensity re-
gions is sufficient in this case (also see appendices C and D).
Additionally, our model assumes that matter ejected from
the haloes will cluster like the matter that was already there.
Any deviation from that will also cause accuracy issues. Fur-
ther exploration for these simulations needs to be done, by
also looking at simulation sets with higher resolution and/or
bigger box size.

To summarize the whole process, we were able to suc-
cessfully apply the “resummation” model from van Loon &
van Daalen (2024) to the FLAMINGO suite of simulations. To
achieve that we had to get the cross-spectra for the binned
haloes and the auto-power spectrum for the dark matter only
simulation. Then, to properly rescale the spectra we had to
map fret to fbc, using bins of haloes. During this process,
we also had to deal with the misalignment issues of the halo
centres in FLAMINGO.

Future research will study if the model can be successfully
applied to different snapshots for higher values of redshift. So
far we have only used the snapshot that corresponds to z = 0.
We are also interested in testing the model for simulation sets
that use a bigger box size or a higher resolution. Using higher
resolutions could allow us to better map fret with fbc for the
smaller regions (R1000c and R2500c). For the simulation set we
have used, because of the big fitting errors for these regions,
we were unable to properly use them for the model, but if
this changes for a higher resolution, as we assume, then we
should be able to have accurate results with our model for
even smaller scales. The simulations with bigger box sizes
will increase the sample size and reduce the variance, which
should also improve the fitting results.

It is also worth exploring the issue of centre misalignment
in the FLAMINGO simulations and how it affects the mapping
between fret and fbc. We have shown how by using the dis-
tance between the centre of potential and the centre of mass
for each halo, we can identify many cases of centre misalign-
ment, but this comes at the cost of biasing the sample of
haloes we use. Fixing the issue of centre misalignment will

be the ideal solution for this case, and there is an active try
to understand the reasons behind it and how to properly
address them. For our purposes, however, examining more
clever and efficient ways to identify haloes with wrong cen-
tres, will greatly improve the fitting parameters between fret
and fbc and as a result the final accuracy of the model.

As a final note, the code we have developed for analyzing
the simulations and getting the power spectra can be utilized
in many other projects, especially for the FLAMINGO simula-
tions. For more information on that, please contact any of
the authors.
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APPENDIX A: MASS DISTRIBUTION PLOTS

We give here some extra mass distribution plots for some
of the different probes we used in section 3.1.1. Figures A1
and A2 show the same distributions for 2 different overden-
sity regions. Each figure consists of 6 panels that contain a
combination of two of the following mass distributions; the
outliers for the difference of the mass profiles of the haloes
from the average mass profile, the outliers of the distance of
the centre of potential for the dark matter only simulation
from the centre of potential for the fiducial simulation, the
outliers for the values of fret, and all the haloes. All the out-
liers are defined as being 2σ away from the average value of
the distribution. All the distributions are normalized to make
them easier to compare.

One interesting result that comes from these figures is the
secondary peak in the mass distribution of the haloes that are
outliers in the mass profiles, in fig. A2 which is for the 500ρc
region, the smallest of the 2. This is interesting because it is
something we would expect if this selection of haloes included
many cases of centre misalignment. As we have already dis-
cussed, misplacing the centre position will lead to a smaller
mass, especially for small regions around the centre, as we
are now sampling from a less dense region. If there are many
such cases in a selection of haloes, it would lead to a sec-
ondary peak in mass values lower than the main peak of the
distribution, which will disappear in the same distribution
for larger regions. This is indeed what we observe in these
results.

APPENDIX B: MASS FRACTION PLOTS

In this appendix, we give the plots for the mass fractions
which were not included in section 3.2. In each of the fig-
ures below, we show fret as a function of fbc for different
overdensity regions. We have two panels, on the left we have
the results by taking into consideration all the haloes of the
simulation, without any halo cuts. On the right panel, we
show the results after cutting the haloes that were identified
as outliers using the distance between the centre of potential
and the centre of mass, as we have discussed in section 3.1.
For the fitting, we use eq. (26) and the values of the fitting
parameters can be found in tables 4 and 5 for the figures
without and with the halo cuts respectively. The legends are
identical to figs. 11 and 12 and therefore not included.

In figs. B1 and B2 we have the results for the R50c and
R100c regions. These regions are relatively large and the re-
sults are very similar to each other and with the ones for the
R200m region which is shown in fig. 11. There is no improve-
ment with the cuts for centre misalignment, there is however
a noticeable change on the fret values which makes a differ-
ence in the fitting. For figs. B3 and B4, where we have the
results for the R200c and R1000c regions, we see a noticeable
improvement on the error bars when we exclude the centre of
mass outliers. This leads to a more reliable fit. We also notice
how in fig. B4, for high values of fbc, fret no longer seems to
follow the relation described in eq. (26).

Lastly in fig. B5, where we have the results for the smallest
region we studied (R2500c), we see that the fit is not great in
both panels. This is because the region is so small that it is
very susceptible to noise, and the exclusion of potential cases
of centre misalignment did not improve the fit. Despite the
problems with the fit, we can still say that the fitting relation
can describe the general trend, but not to a high accuracy.

APPENDIX C: POWER SUPPRESSION PLOTS
USING ONE REGION WITH HALO CUTS

The plots for the model results with the halo cuts (as de-
scribed and analyzed in section 3.1) are given in this ap-
pendix. In section 3.4.1 we have included the results for the
fiducial simulation using the regions R200m, R200c and R500c

for the halo definition. Here we include the results for the
R50c, R200m, R1000c and R2500c regions (figs. C1 and C2). We
also include the results using the two largest regions (R50c,
R100c) for the simulation using strong jets. Each figure has
2 panels for different combinations of simulation and region,
with the appropriate caption.

For the fiducial simulation, by using different simulations
we are able to accurately probe different scales. For the R50c

region, which is the largest one, we can see that we have
a better match for the large scales compared with all the
others. The R100c region is able to accurately match the scales
around 2 to 3 h/Mpc but has a worse match in both the large
and small scales. Finally for the last two regions (R1000c and
R2500c) we have a worse match in all scales. The reason for
that is the fitting of fret with fbc, which is not very accurate
for these small regions. As a result, the model is not able to
properly scale the power spectra.

In section 3.4.2 we analyzed the results for all the different
simulations (see fig. 19). From all the simulations we used, the
worst performance was for the strong jets simulations. One
hypothesis was that the matter ejected from the haloes goes
to greater distances than in other simulations and therefore
we need a bigger region to more accurately probe the power
suppression in the large scales. In fig. C3 we see the one-
region results for R50c and R200m. As we can see, even with
the slight increase in the radius for R50c we do not see a
clear improvement from R200m. Of course, the difference in
the radius between the two might not be enough to improve
the results, and testing for larger regions might show better
results.

APPENDIX D: POWER SUPPRESSION PLOTS
USING ONE REGION WITHOUT HALO CUTS

Similar to the previous appendix, we include here the model
results, without the halo cuts. We include the exact same
combinations of simulations and regions. The models for the
fiducial simulation, using the different regions are shown in
figs. D1 and D2. The plots for the strong jets simulation using
the R50c and R200m regions are shown in fig. D3.

One thing we notice when we are looking at the results
for the fiducial simulation is that they show an improvement
over the corresponding results using the halo cuts. With the
exception of the R2500c region, which shows really poor re-
sults in either case, all other regions show either a slight or
more noticeable improvement. This confirms our findings in
section 3.4 where we discussed possible reasons that explain
this improvement.

For the strong jets simulation, the results in fig. D3 are
very similar to each other and with the ones with the halo
cuts in appendix C. This confirms that the sample bias was
not the reason for the poor (compared with all the other sim-
ulations) match between the true and modelled power sup-
pression. This mismatch is caused by the peculiarities of this
simulation, which we have already discussed.
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Figure A1. Distribution histograms for the overdensity region of 200Ωmρc.

Figure A2. Distribution histograms for the overdensity region of 500ρc.

Figure B1. fret as a function of fbc for the R50c overdensity region.

MNRAS 000, 1–22 (2024)



24 Koutalios & van Daalen

Figure B2. fret as a function of fbc for the R100c overdensity region.

Figure B3. fret as a function of fbc for the R200c overdensity region.

Figure B4. fret as a function of fbc for the R1000c overdensity region.
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Figure B5. fret as a function of fbc for the R2500c overdensity region.

Figure C1. Left panel: fiducial R50c. Right Panel: fiducial R100c.

Figure C2. Left panel: fiducial R1000c. Right Panel: fiducial R2500c.
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Figure C3. Left panel: strong jets R50c. Right Panel: strong jets R200m.

Figure D1. Left panel: fiducial R50c. Right Panel: fiducial R100c.

Figure D2. Left panel: fiducial R1000c. Right Panel: fiducial R2500c.
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Figure D3. Left panel: strong jets R50c. Right Panel: strong jets R200m.
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