Advances in Data Mining: Assignment 2

Group 4
October 8, 2024

1 Introduction

In 2018, a Kaggle competition was made, called 'Predict Future Sales’. In this competition the main task
is to predict total sales for each product for the next month. In Sec. [2] we describe the given data and
we visualise it in Sec. Sec. [presents how we predicted the sales. The conclusion of this project can
be found in Sec. [l

2 Problem Description

Our data consists of 6 csv files. The first one is “sales_train.csv” which contains the daily historical data
of from January 2013 to October 2015. For each sale we have information about the “date” that the
sale was made as well as the “date_block_num” which groups all the sales made within the same month,
starting from O for the first month and going all the way to 33 for the last month. There is also the
“shop_d” for the shop that made the sale, the “item_id” indicating which item was sold and “item_price”
for the price of the item sold. The last row “item_cnt_day” tells us how many items were sold, with
negative numbers indicating that the shop bought that many items.

The “test.csv” contains the data we need to make predictions for the month of November 2015. It has
the “shop_id” and the “item_id” for each possible combination, which is also uniquely identified by the
“ID” column. Our job is to predict the “item_cnt_month” for each one, meaning the number of items sold
within the month of November 2015. This is also clear by looking at the “sample_submission.csv” which
gives us the correct format of the final submission containing two columns, the “ID” which matches the
one in the testing set and the “item_cnt_month” which is our prediction.

The “items.csv” file contains more information about each product that is being sold. For each one
we have the “item_name” with the full name of the product, the “item_id” with the id for the specific
product and the “item_category_id” giving us the category that it belongs to. The “item_categories.csv”
gives us the description of each product category. In total we have 84 different categories and for each one
we have the “item_category_id” and the “item_category_name”, which is the full name of each product
category. Finally, “shops.csv” contains information about each individual shop. The two columns gives
us the “shop_name”, meaning the full name of each shop and the “shop_id”, the id by which we will
identify each shop.

Our objective is to generate predictions for the month of November 2015. The predictions will be the
number of expected sales for each combination of shop and item. As we already described each unique
combination of this form is characterized by a unique ID, which we can find in “test.csv”.

3 Visualisation

In Fig. [I] we present the item sales each year. The year of 2013 and 2014 show an overall increasing
trend, whereas in 2015 the item sales dropped at the end of the year. The number of items in each
numbered category is shown in Fig. 2] As we can see the peaks are at item 0 and 35. The basic statistics
of the item prices be read in Table|l] The mean and the median are relatively low (j 1000), however the
variance is extremely large, as there are several items with unrealistic values. These prices are plotted
against the ID of the item in Fig. [3] The plot is a zoomed in version of the original plot, as there is one
item with a price of 307980. The basic statistics of the number of items sold each day is presented in
Table [2] while we plot the daily sales of each item in Fig. [4} In this plot, we again decided to zoom in, as
there is one value in the item_cnt_day list, which is 2169. As the mean (1.0), median (1.24), and variance
(6.85) show (see Tab. , this value is extremely large compared to the other values. Since our task is
to determine the future sales for the next month, we present the monthly sells of each item ID in Fig.
with a minimum and maximum item_cnt_month of 0 and 20, respectively. The reason behind that is that

99.8% of the values fall below 20. Furthermore, we show the statistics of the item_cnt_month before and
after putting these values in this certain threshold (i.e. clipping) in Tab. [3[and Tab. E[, respectively. As
expected, before clipping, the mean and the variance are larger. However, the median does not change
as it is 0 at both cases.

140000 1

120000 1

100000 -

80000 1

Iltem sales

60000 1

40000 1

20000 1

@@ P ETE TS

Figure 1: Item sales as a function of months. The different colours indicate different years as labeled.

Count

0 1 10 26 35 50 51 52 53 79
Category

Figure 2: Item count per category.

Item price | Mean Median Variance
399 890 2992205

Table 1: The median, mean, and variance of the item prices.

50000 -
----- Median

40000

30000

item_price

20000

10000

10000 15000 20000
item_id

Figure 3: Item prices as a function of their ID. The median of the prices is shown with a dashed line.

Item count day | Mean Median Variance
1.0 1.24 6.85

Table 2: The mean, median, and variance of the daily sales.

. . Median
600
500 . 3 . .
)
o 400 .]
o
c .
o
300
£
a
=
200
100

0 5000 10000 15000 20000
item_id

Figure 4: The daily sales versus the ID of the item. Black dashed line indicates the median of the daily
sales.

2000 1

*
"

17.5 4

15.0 1

th

E 125

1A

1100 -

75 1

iterm cnt m

L T I T T I R]

5.0 4

25 1

00~

0 5000 10000 15000 20000
item id

Figure 5: The number of items sold each month. The values are put in a threshold of 0 and 20 (see text
for details).

Item count month | Mean Median Variance
0.32 0.0 11.45

Table 3: The mean, median, and variance before clipping.

Item count month | Mean Median Variance
0.29 0.0 1.46

Table 4: The mean, median, and variance after clipping.

4 Experimental setup

Before beginning to apply the forecasting algorithms we need to create the training, validation and testing
data sets. Because we don’t have access to the correct values of the predictions that we will generate, we
decided to use the last available month (October 2015) as our validation set. The purpose of this set is
that we will exclude it from the training process and only use it as an indicator of what our final score
should be.

Our training set contains all the entries that correspond to months ranging from January 2013 to
September 2015, which is consistent with date_block_num from 0 to 32. The X _train is multidimensional
and we can include many different parameters that we think will be a valuable indicator of future sales
of the product. We chose to use the date_block num , shop_id and item_id . We also used an extended
version which included the item_category_id, item_maincategory_id and item_subcategory_id. The last
two IDs were created based on the name of the item category that had two names separated with a “-”.
We used the LabelEncoder to generate integers that will act as a unique identifier of each of the two
names of the item’s category.

The Y _train includes the values of “item_cnt_month” that correspond to each input of X_train. The
value of “item_cnt_month” tells us the total number of sales for the corresponding compination of item
and shop for each month. It is clipped between 0 and 20 as discussed in Section [3] to remove the outliers
which will give us better results in our predictions.

4.1 LGBM Regressor

Light GBM is an open-source gradient boosting framework that is based on the tree learning technique
and is aimed to handle data more quickly and accurately. It can handle massive datasets while using less
memory and allows distributed learning.

After transforming our training and validation sets to a form that can be used to train the Regressor
we train for 50 iterations with an early stopping of 5 rounds, meaning if the score on the validation set

doesn’t improve for 5 consecutive training rounds, the process will be terminated and the best scoring
iteration will be used.

The results, including the training time, can be found in Table The score for the training and
validations set was calculated during the training process. The score for the testing set which is our
actual goal could only be calculated after generating the predictions using the X_test and submitting it
on the Kaggle challenge.

Training Validation Testing | Training Time
Score 1.39 1.24 1.19 20.56 s

Table 5: The final scores for the training, validation and testing sets using the LGBM Regressor. The
last column shows the time required for the training process.

We repeat the same process using the extended dataset that contains more dimensions for the input
of the model. The results are shown in Table [G]

Training Validation Testing | Training Time
Score 1.13 1.02 1.098 24.39 s

Table 6: The final scores for the extended versions of the training, validation and testing sets using the
LGBM Regressor. The last column shows the time required for the training process.

We see that increasing the dimensions of the input to include even more information led to a noticeable
improvement on the final testing score.

4.2 XGBoost Algorithm

Xgboost (eXtreme Gradient Boosting) is an improved version of the ensemble machine learning method
that uses the gradient descent boosting approach. It is applicable to both regression and classification
issues. Its purpose is to maximize model performance as well as execution speed. It is ten times quicker
than standard Gradient Boosting. Furthermore, XGBoost incorporates a novel split-finding technique to
optimize trees, as well as built-in regularization to minimize over fitting. For our implementation we use
the XGBRegressor function.

We train using 500 estimators and an early stopping of 10 rounds. After the training process is over
we use the X_test data set in order to generate the predictions we want to submit on the Kaggle challenge.
The results for all the data sets can be found in Table[7] It also includes the time required to train the
Regressor.

Training Validation Testing | Training Time
Score 1.18 1.11 1.18 705.53 s

Table 7: The final scores for the training, validation and testing sets using the XGBoost Algorithm. The
last column shows the time required for the training process.

We repeat the same process using the extended data sets. The results are shown in Table

Training Validation Testing | Training Time
Score 1.07 1.00 1.080 853.44 s

Table 8: The final scores for the extended versions of the training, validation and testing sets using the
XGBoost Algorithm. The last column shows the time required for the training process.

Similarly to the previous method we also had a noticeable improvement of our final testing score with
the extended data set. This however came at the cost of some more computational time that was required
during the training process.

One thing that will help us visualise the training process is the importance of each of the training
features. In Figure [we can find the importance of each individual dimension of our multidimensional
input during the training of our algorithm. The three features that were included in the extended version
of our data sets but are not part of the original ones are dominating the other three. However this can
lead to some over-fitting and this is the reason that including more and more features will not yield better
results.

itemn_maincategory_id
item_category _id
item_subcategory id
shop_id

item_id

date block _num

Features

o.as o oS 0.z 025

Importance

Figure 6: The importance of each feature that was used for the training of the XGBoost Algorithm. This
graph was created for the extended version of our training input.

4.3 Random Forest Regression Algorithm

Random Forest Regression is a supervised learning technique that uses ensemble learning to do regres-
sion by combining predictions from multiple machine learning algorithms to generate a more accurate
prediction than a single model. During training, a Random Forest algorithm constructs many decision
trees and outputs the mean of the classes as the forecast of all the trees.

We trained our random forest regression model using the sklearn package, specifically the Random-
ForestRegressor function. Our base model uses 40 trees, the max depth of each tree is set to 15 and the
random _state is set to 42 in order to make the code reproducible.

We train the model using our training set. After the training process is over we calculate the scores
for both the training and the validation sets. The final step is to use our model and the testing set in
order to generate predictions that are ready to be submitted on Kaggle challenge. The final results can
be found in Table [0l

Training Validation Testing | Training Time
Score 0.24 0.15 1.119 678.73 s

Table 9: The final scores for the training, validation and testing sets using the Random Forest Regression
Algorithm. The last column shows the time required for the training process.

We repeat the same process but this time we use the extended versions of our data sets. The results
can be found in Table [I0l

Training Validation Testing | Training Time
Score 0.41 0.21 1.099 945.32 s

Table 10: The final scores for the extended versions of the training, validation and testing sets using the
Random Forest Regression Algorithm. The last column shows the time required for the training process.

As we can see there is once again a slight improvement on the score of the testing set. This however
came at the cost of more computational time.

5 Conclusions

During this assignment we managed to succesfully complete the Kaggle challenge “Predict Future Sales”.
Our best score is 1.080 which was achieved by implementing XGBoost Algorithm for our extended data
set. We also created various visualisation plots in order to better understand the data we were given.

As we already discussed increasing the number of dimensions of our input to include more training
features can lead to better results. There is however the issue of over-fitting the data. When we attempted
to increase the number of features even further, the final scores on the testing set didn’t improve and in
most cases they got even worse than our original scores before the extended version.

In Figure [7] we can see the final results for all the three different forecasting algorithms that we used.
The results are for the extended data sets that gave us the best results overall.

1.2 1200

1.1 - 1100
0.9 - - 900
()
0.8 1 Training - L 800 E
El Validation - =
@ 0.7 : L 700
bt B Testing - o
8 0.6 1 —— Running Time - r600 ~
W 0.5 L 500 C
[] c
0.4 F400 =
0.3 1 _= - 300 o
o N
0.1 A 100
LGB XGB RF

Figure 7: The final results for all the tree different algorithms that were implemented. The results include
the score of the training and validation set as well as the score of the testing set as it was calculated on
Kaggle. The red line shows the running time for the training process of each algorithm.

On the Kaggle competition our team name is “group_4_leiden_aidm”.

	Introduction
	Problem Description
	Visualisation
	Experimental setup
	LGBM Regressor
	XGBoost Algorithm
	Random Forest Regression Algorithm

	Conclusions

