
Spectral Classification of
Neutron Star Post-Merger

Gravitational Wave Emission

Author: Ioannis Koutalios
Supervisor: Nikolaos Stergioulas

Department of Astrophysics, Astronomy and Mechanics

Department of Physics

Aristotle University of Thessaloniki

October 13, 2020



Abstract

The post-merger phase of binary neutron star mergers includes the imprint of dis-
tinct gravitational-wave emission processes. We compute Fourier spectra for a large
number gravitational wave signals that were produced through simulations and were
made available by three different numerical relativity groups and find they are well
described by the classification proposed in Bauswein and Stergioulas (2015). For all
cases, we also compute time-frequency spectrograms to distinguish the early from
the late emission. In addition, we reproduce some empirical relations that were re-
cently proposed and connect the properties of the neutron stars in the inspiral phase
to the main frequency peak in the post-merger phase.
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Chapter 1

Introduction

We provide some very general information about neutron stars (NS) and and grav-
itational waves (GW) following the review articles and textbooks [1–6].

1.1 Neutron Stars

Neutron stars are formed from massive stars, heavier than about eight times the
mass of our sun, but not heavier than about 20 times. They are the product of
the core collapse of those stars, which tis accompanied by a supernova explosion. A
prime example of such an explosion is the Crab Nebula, which hosts a neutron star
at its center and is the remnant of a supergiant star that exploded at 1054. When
the core of the star becomes iron rich, it can no longer produce energy by nuclear
fusion, because iron 56 has the highest binding energy, and is thus not favorable to be
fused into heavier elements. This leads to a point at which the electron degeneracy
pressure, which supports a star against gravitational collapse, is no longer able to
complete this task, allowing the core to collapse and form a neutron star, while the
other outer layers of the star bounce off, leading to the explosion that is observed
as a supernova.

At high densities, protons and electrons are combined in order to form neutrons
plus neutrinos. During this process neutrinos escape, creating a neutrino burst. The
neutrons settle down and create a neutron star, with the neutron degeneracy as the
main force opposing a total gravitational collapse. The first discovery of a neutron
star came from Jocelyn Bell in 1968 [7], with the observation of a pulsar, which is
a fast rotating, magnetized neutron star. With more research and observations, it
became clear that neutron degeneracy could not be the only force holding a heavy
neutron star star from becoming a black hole, and that repulsive nuclear forces also
had to play a role in supporting these structures. The mass range of neutron stars is
currently estimated to be 1.0−2.5M⊙ with the upper limit still being very uncertain.
At the moment, the uncertainty in the radius is also large and a typical neutron star
could have a radius of 11 km or of 14 km.

There are many question that remain to be answered andsome of them will
hopefully be solved by more detections of gravitational wave signals from binary
neutron star mergers. Such questions are the composition of matter at the high
densities that are present inside a neutron star, differences between normal and
neutron-rich matter and the ability to calculate from first principles how matter
behaves in β equilibrium. The motivation behind a better understanding of the
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1.2. GRAVITATIONAL WAVES

nature of neutron stars is not only to be able to describe them more accurately.
Neutron stars serve as an important laboratory for discovering new physics and
they are relevant to several other fields of physics, bringing together scientists and
necessitating a collaboration between such fields in order to properly observe, explain
and predict phenomena related to them. A breakthrough in our understanding
of neutron stars can lead to a better and deeper understanding of nuclear and
theoretical physics, as well as several other fields.

1.2 Gravitational Waves

Einstein explained gravity is the result of the curvature of spacetime. In the absence
of mass, spacetime remains flat, but the presence of any mass or energy curves space
and time. This idea led to the field equations of the General Relativity (GR). Any
asymmetric (equal or higher than quadrupolar) changes in the position of masses
leads to the creation of ”ripples” in spacetime, meaning a wavelike change of the
gravitational field. Much like how the motion of charged particles will create elec-
tromagnetic waves, moving masses create gravitational waves. Because gravity is
∼ 1040 times weaker than the electromagnetic force, such waves are not having any
effects that can be observed without appropriate instruments. An example of a
strong gravitational wave source are two black holes merging into one. Events like
this are extremely rare in our universe. The effect that this will produce, here on
Earth, is a displacement that will be almost 1000 times smaller than the diameter
of a single proton.

Not every motion of mass will create gravitational waves. A perfectly shaped
star, for example, spinning axisymmetrically around its own axis will not create
gravitational waves. If the star has some anomalies on its surface, then gravitational
waves will be produced depending on the degree of its asymmetry. Another example
is supernova explosions. If we assume that the explosion is spherically symmetric,
there should be no gravitational waves emitted. However our understanding of such
explosions is that it is not perfect and the ejection is far from being symmetric, so
we anticipate that gravitational waves are being produced and that we will one day
be able to detect them.

So far, the only sources of gravitational waves that have been observed with our
current technology are waves being produced during the late stages of binary sys-
tems. The so called inspiral gravitational waves are generated during those events,
where two compact binary objects such as black holes and/or neutron stars are merg-
ing into one. Such systems are constantly producing gravitational waves, which leads
to an energy loss, allowing the system to come closer and closer. Near the point
of coalescence, the two objects are emitting gravitational waves strong enough to
be detected with our equipment. The frequency is rapidly increasing, producing a
characteristic ”chirp sound”.

The first pair of neutron stars was observed by Hulse and Taylor in 1974 [8].
The system consists of a pulsar in orbit with another neutron star. The decay of the
orbit of the system was matched exactly with the predictions of general relativity,
providing us very strong, although not direct, evidence that gravitational waves, as
predicted by Einstein’s general relativity, do exist. The discovery of PSR B1913+16
(the name of the binary system), as well as the measurements of the decay, gave
Hulse and Taylor the Nobel Prize in 1993.
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1.3. DETECTING GRAVITATIONAL WAVES

1.3 Detecting Gravitational Waves

The interaction of gravitational waves with matter leads to the compression of ob-
jects in one direction while stretching them in the perpendicular direction. One can
imagine this by a square (e.g. 1m in length) which will be stretched and become a
rectangle (e.g. 0.8m in length and 1.2m in width). Therefore, it makes sense to use
L-shaped detectors and measure how the relative lengths of the two arms are chang-
ing, using interferometry. With interferometry we can observe patterns produced
when two light sources are combined, so-called interference patterns. We can then
know how the length of one arm is changing with respect to the other. Two such
interferometers were build in the US, one in Hanford, Washington and the other
in Livingston, Louisiana. They are called Laser Interferometer Gravitational-wave
Observatory (LIGO) [9, 10]. There are more detectors scattered around the globe,
VIRGO in Italy [11, 12], GEO600 in Germany [13, 14] and TAMA in Japan [15, 16].

There is a need for multiple interferometers in order to be able to detect gravita-
tional waves. Using multiple detectors has the advantage of being able to locate the
source, since a single directional detector cannot give us accurate sky localization.
The finite speed of these waves (equal to the speed of light) means that there will
be a delay between the detection at the first interferometer and the others and one
can use the differences in orientation between the different detectors to infer the
location of the source on the sky. This is one of the reasons why having multiple
detectors is necessary, other than reducing the errors. Noise is something tricky for
such detections, because as discussed previously, the displacements that one tries
to measure are extremely small. Various sources, even tiny earthquakes can create
signals that mimic gravitational waves, so analyzing the data of multiple detectors
can cross out these local noises.

Gravitational wave antennas are essentially omni-directional, with linearly polar-
ized quadrupolar antenna patterns that typically have a response better than 50%
of its average over 75% of the sky. Their nearly all-sky sensitivity is an important
difference from pointed astronomical antennas and telescopes. Gravitational wave
antennas operate as a network, with the aim of taking data continuously. Gravita-
tional wave detectors register gravitational waves coherently by following the phase
of the wave and not just measuring its intensity. Since the phase is determined by
large-scale motions of matter inside the sources, much of the astrophysical infor-
mation is extracted from the phase. This leads to different kinds of data analysis
methods than one normally encounters in astronomy, based on matched filtering and
searches over large parameter spaces of potential signals. This style of data analysis
requires the input of pre-calculated template signals, which means that gravitational
wave detection depends more strongly than most other branches of astronomy on
theoretical input. The better the input, the greater the range of the detectors.

The fact that detectors are omni-directional and detect coherently the phase
of the incoming wave makes them in many ways more like microphones for sound
than like conventional telescopes. The analogy with sound can be helpful, since
microphones can be used to monitor environments for disturbances in any location,
and since when we listen to sounds our brains do a form of matched filtering to allow
us to interpret the sounds we want to understand against a background of noise. In
a very real sense, gravitational wave detectors will be listening to the sounds of a
restless universe. The gravitational wave “window” is actually a listening post, a

6



1.3. DETECTING GRAVITATIONAL WAVES

monitor for the most dramatic events that occur in the universe [5]
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Chapter 2

EOS and Tidal Deformability

Of fundamental importance for neutron stars is the equation of state (EOS). The
basis of this is to have equations describing the macrophysical quantities of the
neutron stars, that we can observe, derived from the microphysical properties of
matter. In order to do that we need an EOS in the form of P (ϵ), where P is
pressure and ϵ is energy density and by using the GR equations with some symmetry
assumptions we can derive a relation such as mass versus radius, M(R). This
problem was successfully solved by Tolman, Oppenheimer and Volkoff (TOV) [17],
who independently solved this problem for static and spherically symmetric NS
consisting of a perfect fluid.

2.1 The TOV set of equations

Using the metric for a spherically symmetric, stationary and asymptotically flat
spacetime in Schwarzschild coordinates t, r, θ, ϕ

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdϕ2), (2.1)

where ν(r) and λ(r) are metric functions, the set of the TOV equations [17] can be
written in the form:

P = P (ϵ),

dP

dr
= −(ϵ+ P )(m+ 4πr3P )

r(r − 2m)
,

dm

dr
= 4πr2ϵ,

dν

dr
= − 2

ϵ+ P

dP

dr
=

2(m+ 4πr3P )

r(r − 2m)
,

λ = − ln

(
1− 2m

r

)
,

where m(r) is the mass-energy contained within a sphere of radious r and we used
c = G = 1. This set of differential equations is all we need in order to fully determine
all the properties that we need for a neutron star, as long as the Someone needs to
define the P = P (ϵ) relation is specified.

The EOS can be specified using several descriptions, such as :
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2.1. THE TOV SET OF EQUATIONS

• Microphysical (tabulated) EOS,

• Piecewise Polytropic approximation,

• Spectral approximation.

Throughout this thesis we will use the Piecewise Polytropic description, which will
be described in detail.

2.1.1 Piecewise Polytropic description

We follow the work from [18]. A piecewise polytropic EOS is defined by a low-
density ρ < ρ0 part (which can be a tabulated crust EOS or its piecewise polytropic
analytic approximation) and a high-density part, ρ ≥ ρ0. The matching baryonic
(rest-mass) density ρ0 is defined by the crossing point between the low-density part
and the first high-density piece. The other two dividing densities in the high-density
region are fixed as ρ1 = 1014.7g/cm3 and ρ2 = 1015.0g/cm3.

In this way, we create different intervals in which we have a different polytropic
relation of the form

P = Kiρ
Γi , (2.2)

where Ki and Γi are the polytropic constant and the polytropic exponent, in each
interval, respectively. The P = P (ρ) relation has to be continuous for all the different
densities. This means that at a dividing density ρi

P (ρi) = Kiρ
Γi = Ki+1ρ

Γi+1 .

For our three intervals we have an extra set of two equations reducing the free
parameters from six to four. We define K1,Γ1,Γ2,Γ3 and derive the two remaining
K2, K3.

In order to obtain the energy density, we need the first law of thermodynamics
for barotropic fluids:

d
ϵ

ρ
= −Pd

1

ρ
. (2.3)

Integrating for Γ ̸= 1:

ϵ(ρ) = (1 + αi)ρ+
Ki

Γi − 1
ρΓi , (2.4)

where αi is determined by requiring continuity in the energy density:

αi =
ϵ(ρi−1)

ρi−1

− 1− Ki

Γi − 1
ρΓi−1
i−1 . (2.5)

We can now solve the TOV set of differential equations

d

dr

P (r)
m(r)
ν(r)

 =

−
(ϵ+P )(m+4πr3P )

r(r−2m)

4πr2ϵ
2(m+4πr3P )

r(r−2m)

 , (2.6)

just by defining {K1,Γ1,Γ2,Γ3} or {p1,Γ2,Γ3} for the high-density part of the EOS
(in addition to a chosen low-density part, which can also be represented in piecewise-
polytropic form).
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2.2. TIDAL DEFORMABILITY

Figure 2.1: An example of a piecewise polytropic EOS. Te three intervals at high
densities are shown match by a description of the crust. This relation has to be
continuous at all densities. Figure from [19].

2.2 Tidal Deformability

The tidal deformability λ relating the star’s induced quadrupole deformation Qij

due to an external tidal field Eij is defined through

Qij = −λEij. (2.7)

The tidal deformability λ is related to the l = 2 dimensionless tidal Love number k2
by:

k2 =
3

2
λR−5, (2.8)

and one can define the dimensionless tidal deformability as

Λ =
λ

M5
=

2

3
k2

(
R

M

)5

. (2.9)
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2.3. EQUILIBRIUM MODELS OF ISOLATED NS

From Equation (2.7) and applying a linear l = 2 perturbation to a spherically
symmetric neutron star, one can derive a second-order differential equation, which
can then be simplified as a system of two first degree differential equations [20]

dH(r)

dr
= β, (2.10)

dβ(r)

dr
=

2rH

r − 2m

[
−2π

(
5ϵ+ 9P +

ϵ+ P
dp
dϵ

)
+

3

r2
2r

r − 2m

(m
r2

+ 4πrP
)2]

+
2βr

r(r − 2m)

[
−1 +

m

r
+ 2πr2(ϵ− P )

]
, (2.11)

This set is added to the TOV equations and one can then calculate the tidal de-
formability by defining:

y =
Rβ(R)

H(R)
. (2.12)

The l = 2 Love number is obtained as

k2 =
8C5

5
(1− 2C)2[2 + 2C(y − 1)− y]{2C[6− 3y + 3C(5y − 8)]+

+4C3[13− 11y + C(3y − 2) + 2C2(1 + y)] + 3(1− 2C)2

×[2− y + 2C(y − 1)] ln(1− 2C)}−1. (2.13)

2.3 Equilibrium Models of Isolated NS

The integration of the previous set of five differential equations is performed numer-
ically. We use the pyTOVpp code by N. Stergioulas [21] with some changes, that can
be found here [22], in order to include the two equations for the tidal deformability.
At first, someone has to define which EOS will be used, by fixing the low-density part
of the EOS and choosing the high-density EOS through the choice of {p1,Γ2,Γ3}.

For each equilibrium models, one defines the central density. Using a script that
runs pyTOVpp in a loop for different central densities, the sequence of equilibrium
models was obtained for each EOS, obtaining the relations M = M(R) , k2 = k2(M)
and λ = λ(M). Results for a particular selection of EOS are shown in Figures 2.2
to 2.4 and agree with published results, see [23], [20], [24]
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2.3. EQUILIBRIUM MODELS OF ISOLATED NS
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Figure 2.2: The mass vs. radius relation for different EOS as computed with the
pyTOVpp code [21].
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Figure 2.3: The Love number as a function of the mass for different EOS.
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Figure 2.4: The dimensionless tidal deformability for various EOS.
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Chapter 3

Empirical Relations in the Time
and Frequency Domains

Some properties of merger remnant correlate well with the tidal deformability. We
will use post-merger GW waveforms from the CoRe database [25] in order to confirm
several empirical relations presented in [25].

3.1 Time Domain

The time difference between merger and the first post-merger minimum was shown in
[25] to correlate with a mass-weighted tidal deformability. In addition, the amplitude
of the first post-merger maximum was shown to have a specific dependence on the
mass ratio of the binary. Figure 3.1 shows a representative GW waveform and three
specific times that are of interest.

Here, the time of the merger is defined as the time of the GW peak amplitude.
After that, the amplitude decreases as it reaches a lowest value, before increasing
again for a few milliseconds, followed by a damping of oscillations in the post-merger
phase. We are interested in calculating how the time ∆tmin for the amplitude to reach
its first minimum after the merger. Then, we plot this against the mass-weighted
tidal deformability, which is defined as

Λ̃ =
16

3

(MA + 12MB)M
4
AΛA + (MB + 12MA)M

4
BΛB

(MA +MB)5
, (3.1)

where ΛA,ΛB is the dimensionless tidal deformability for the two component of the
binary.

Figure 3.2 shows ∆tmin v.s Λ̃ We then fit the data using the relation:

∆tmin

M
= a

1 + bΛ̃

1 + cΛ̃
. (3.2)

The least square fit yields these results:

a = 3.782× 101, b = 6.514× 10−4, c = 6.064× 10−5.

The GW signal after it reaches its first minimum, the amplitude starts to grow
up until it reaches a new maximum. We find the relation between the value of this
amplitude and the mass ratio of the binary, which is shown in Figure 3.3
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3.2. FREQUENCY DOMAIN
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Figure 3.1: The GW signal for model THC:0003 of the CORE database. Red dots
mark the merger, first post-merger minimum, and first post-merger maximum. Here,
both time and amplitude are dimensionless.

Again we fit the data using the equation:

rh22(tmax1)

M
= a

1 + bq

1 + cq
, (3.3)

which yields:

a = 2.798× 10−1, b = −5.384× 10−1, c = −2.523× 10−1.

3.2 Frequency Domain

We obtain the frequency domain by isolating the postmerger part of GW signal, then
apply a Tukey window and finally taking the FFT (Fast Fourier Transformation).
We can see an example at Figure 3.4 .

The main characteristic of this frequency spectrum is the peak which is known
as f2. In the paper [25] there is the definition for a parameter ζ which is a linear
combination of keff (keff = 3

16
Λ̃) and M

MTOV
. MTOV is the maximum allowed mass

of a single non-rotating NS and is a therefore a characteristic of its EOS. The final
formula for ζ is:

ζ = keff + a
M

MTOV

, (3.4)

where a = −131.7010
The results of this analysis are show in Figure 3.5
Following the same way of thinking as in the Time Domain analysis we fit the

results using:

Mf2(ζ) = a
1 + bζ

1 + cζ
. (3.5)
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Figure 3.2: Dimensionless time between merger and the first postmerger minimum
as a function of the dimensionless mass-weighted tidal deformability. The colors
represent the different mass ratios

The least squares fit gives as a result:

a = 3.396× 10−2, b = 1.927× 10−3, c = 3.857× 10−3.

16



3.2. FREQUENCY DOMAIN
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Figure 3.3: The first peak of the postmerger as a function of the mass ratio. The
color represents the dimensionless mass weighted tidal deformability
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Chapter 4

Spectral Classification of
Post-Merger Gravitational Wave
Emission

In this chapter we will explore the main frequencies presented in the postmerger
spectrum of multiple simulations and we will try to do some sort of classification
based on the shape of the spectrum they produce.

To date, the advanced GW detectors have only been able to observe the inspiral
of NS mergers and no postmerger signals have been observed. This is caused due to
the high emission frequency at which current GW detectors are less sensitive. Future
detectors are expected to be more sensitive and allow us to detect the postmerger
phase of a few loud events

4.1 Main frequencies

The frequency spectrum of the postmerger of GW signal has a characteristic peak
which is known as the main postmerger frequency (fpeak). In addition to that
there are two other low frequency secondary peaks (f2−0, fspiral). The first one is a
nonlinear combination frequency between the dominant quadrupolar fpeak oscillation
and the quasiradial oscillation of the remnant. More information about the nature of
this secondary peak can be found in [26]. The second one is produced by the rotating
pattern of a deformation of spiral shape. This deformation is initially produced at
the time of merging and is then sustained for a few rotational periods. According
to [27] these two mechanisms are independent and can be distinct. The secondary
fspiral peak is produced by a strong deformation initiated at the time of merging,
the pattern of which then rotates slower than the inner remnant and lasts for a few
rotational periods, while diminishing in amplitude.

The consideration of the two different mechanisms leads to a unified classifica-
tion scheme for the postmerger dynamics and GW emission. For high-mass binaries
(relative to the threshold mass to prompt black-hole collapse), the nonlinear combi-
nation frequency dominates, while for low-mass binaries it is the spiral deformation
that produces the strongest secondary peak. Both are simultaneously present and
can produce peaks of comparable strength for intermediate binary masses.
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4.2. TYPE CLASSIFICATION

4.2 Type Classification

We use the same classification as in [27], which means that we have three types de-
pending on the relative strength of f2−0 and fspiral. The three types can be described
as it follows:

• Type I: When the total binary mass Mtot is not too far from the threshold
mass for prompt quasiradial collapse of the remnant for a given EOS the
evolution of the central lapse function is dominated by a very strong quasiradial
oscillation of the remnant. For such models the two initial NSs are more
centrally condensed, and they merge with higher impact velocity. Because
of the strongly excited quasiradial oscillation, f2−0 is the strongest secondary
peak in the GW spectrum, while fspiral is much weaker, likely because for more
compact NSs the formation of the spiral pattern is less pronounced.

• Type II: For intermediate total binary masses, f2−0 and fspiral have a compa-
rable strength in the GW spectrum and the two types of secondary peaks are
well separated. In characteristic quantities such as the central lapse function,
the low frequency modulation with f2−0 and fspiral are clearly noticeable.

• Type III: When the total binary mass Mtot is significantly below the threshold
mass for quasiradial collapse, the time evolution of the central lapse function
is dominated by the fpeak and fspiral modulation as a result of the rotating
spiral pattern with the two antipodal bulges. In the evolution of the central
lapse function, this modulation typically has a smaller amplitude than type-
I variations. The smaller NS compactness also allows for a stronger spiral
deformation. Consequently, the dominant secondary peak in the GW spectrum
is fspiral, while f2−0 is either very weak or hidden inside the background.
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Figure 4.1: A representation of the different types on an M(R) diagram. The lines
that separate the figure into three sections come from [28]. The points come from
the CoRe database and are for the cases that we explored in chapter 5.

This distinction may not always be clear, as there are many cases especially close
to the borders of each type and for big mass ratios, that could potentially belong to
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both or neither type. However for the majority of the mergers you can distinguish
between the three types and see how for the same EOS you can go from type 3 to
1 as your stars get heavier.

4.3 Expected Frequencies

The question remains as to whether we can predict the frequencies at which the
main and secondary peaks should be found. Following the work of [28] we have
some equations we can use to make such predictions within range.
These empirical relations came from analyzing the CFC/SPH GW catalog for many
different masses and EOS. Using a least-squares minimization method they con-
structed two-parameter relations of the form fj(Rx,Mchirp) where j is one of the
frequency peaks (fpeak, f2−0, fspiral) and x stands for the mass of fiducial nonrotating
NS models, in solar masses. Mchirp is the chirp mass of the inspiraling binary. The
set was divided to two, one being the binary systems with equal mass partners and
the second one being the whole set including both equal and unequal mass binaries.
This work was done in [28] and the equations are:

• For equal mass binary systems

fpeak/Mchirp =13.822− 0.576Mchirp − 1.375R1.6 + 0.479M2
chirp

− 0.073R1.6Mchirp + 0.044R2
1.6, (4.1)

f2−0/Mchirp =8.943 + 4.059Mchirp − 1.332R1.6 − 0.358M2
chirp

− 0.182R1.6Mchirp + 0.048R2
1.6, (4.2)

fspiral/Mchirp =6.264 + 1.929Mchirp − 0.645R1.8 + 0.881M2
chirp

− 0.311R1.8Mchirp + 0.03R2
1.8. (4.3)

• For all binary systems (both equal mass and not)

fpeak/Mchirp =10.942− 0.369Mchirp − 0.987R1.8 + 1.095M2
chirp

− 0.201R1.8Mchirp + 0.036R2
1.8, (4.4)

f2−0/Mchirp =9.586 + 4.09Mchirp − 1.427R1.6 + 0.048M2
chirp

− 0.261R1.6Mchirp + 0.055R2
1.6, (4.5)

fspiral/Mchirp =5.846 + 1.75Mchirp − 0.555R1.8 + 1.002M2
chirp

− 0.316R1.8Mchirp + 0.026R2
1.8. (4.6)
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In all equations mass is given in solar masses and the radius for the various
masses is given in kilometers (km). The frequency is calculated in kHz.

This set of equations can be used to predict the frequency at which the main
and secondary peaks of the postmerger GW spectrum should appear. In [28] the
simulations used to extract these relations came from CFC/SPH GW catalog. In
the next chapter we will investigate if these relations can be used in three other
catalogs.
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Chapter 5

Frequency Plots

In this chapter we will discuss the analysis of the postmerger frequency spectrum
from three catalogs. The analysis was done using python codes to isolate the post-
merger part of the time domain, then FFT in order to get the frequency domain.
After that we used the equations described in chapter 4 in order to get the frequen-
cies in which we expect to get the main and secondary peaks. After that we did
some plotting in order to visualize our results and get a picture of how close are
the expected frequencies to the actual peaks. Finally we produced the spectrograms
using wavelets in order to visualize the time evolution of the frequency peaks.

This work was done for multiple simulations from each catalog and the results
are available in (https://github.com/johnkou97). For this thesis we picked a few
cases in order to be able to discuss the results.

We also added an extra line for an expected secondary peak in higher frequencies
than the main peak. The new (2+0)peak is symmetrical to the f2−0 with respect to
the main peak and is given by the equation:

f2+0 = 2fpeak − f2−0. (5.1)

We will use this line to test if it coincides with a local maxima of the frequency
spectrum.
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5.1 CoRe
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Figure 5.1: The three mergers from the CoRe catalog that will be discussed in
this chapter. We can clearly see that they represent all three types as discussed in
chapter 4. For more information about this type of figure you can see 4.1.

The CoRe data [25] are available at (www.computational-relativity.org). We se-
lected 31 simulations from the BAM catalog in order to create the plots. The full re-
sults are available here: (http://github.com/johnkou97/postmerger_frequencies/
tree/master/results). We will discuss three cases, one from each type and also
see if the peaks appear in the frequencies we expect them. Some numerical results
are available in Table B.1.

The first case we study is the simulation BAM:0122 . The characteristics of the
system can be found in Appendix B. It was selected because it is a great example
of a Type I merger. We can clearly see the dominant peak in all Figures 5.2 to 5.4.
Moreover there is a clear secondary peak at around 2 kHz. From our analysis of
the three types and knowing that BAM:0122 is of the first type, due to the masses
and the EOS of the two neutron stars, we should expect that it comes from the
non linear combination frequency f2−0. If we calculate the frequencies at which we
expect the secondary peaks to appear, from Equations (4.5) and (4.6), we get the
lines that are shown in Figures 5.2 and 5.3. The line for the 2-0 secondary peak is
much closer to the actual peak leading us to assume that it is indeed the f2−0 that
is more dominant. The (2+0) line also falls in accordance with a local maximum, a
very strong indication that the actual peak there is indeed the f2+0.

After our discussion about the type of the merger and the secondary peaks, we
produced the spectrogram fig. 5.4 in order to see the time evolution of the frequency
spectrum. We used wavelets in order to produce this figure. Wavelets have two
main characteristics. First one is the width which is the frequency resolution, and
bandwidths which describes the time resolution. Of cource if the time resolution is
too high there is the risk of not getting a really accurate picture on the frequency
domain because we analyze a smaller part of the signal. This technique will be used
to produce all the spectrograms that appear on this thesis.

For BAM:0122 we can see that the main peak has a strong presence in most of
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Figure 5.2: The linear frequency plot for BAM:0122. It is a type I binary neutron
star merger as we can see from the dominant secondary peak which is the non linear
combination frequency f2−0.
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Figure 5.3: Again the BAM:0122 in logarithmic scale.
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Figure 5.4: The spectrogram of BAM:0122. We can clearly see the main peak and
also a secondary peak at arounf 2 kHz.

the timeseries. It has a bigger amplitude in the first few miliseconds, then slowly
diminishes until the end of the postmerger phase. On the other hand the secondary
peak is only present for a few miliseconds. This was expected due to the nature
of the mechanisms producing this peak as discussed in chapter 4. After this initial
bump, the amplitude of the secondary peak vanishes and is no longer present in the
later stages of the postmerger.

The next case we will discuss is BAM:0009. Again you can find more about the
system at Table B.1. We selected this case because it is a typical Type II binary
neutron star merger. The figures are shown here: Figures 5.5 and 5.6. As in all
postmerger frequency spectrums we have the main peak. At smaller frequencys we
can clearly see the two secondary peaks. As we have previously discussed in chapter 4
the Type II spectrum should consist of two distinguished secondary peaks with more
or less the same amplitude. The f2+0 line falls between two high frequency peaks,
which makes it not possible to say which peak is actually the (2+0) frequency.

The logarithmic scale helps us a bit more to seperate the two secondary peaks.
We can see that we have a satisfying agreement between our lines and the actual
peaks of the spectrum, with only the exception of fpeak which is in a bit lower
frequency than expected .Especially in the secondary peaks, our lines are showing
the position of each peak, helping us distinguish between f2−0 and fspiral.

In the spectrogram fig. 5.7 we can have a clear view of the secondary peaks. We
can see the two bulges, one of which is a bit above 1.5kHz and the second one a
bit lower. We also see how both are only affecting the timeseries for the first few
miliseconds, in contrary with the main peak which is affecting almost the whole
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Figure 5.5: The linear frequency plot for BAM:0009. It is a type II binary neutron
star merger as we can see from the fact that the inspiral and 2-0 frequency amplitudes
are at the same level.
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Figure 5.6: The frequency spectrum for BAM:0009 in logarithmic scale.
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Figure 5.7: The spectrogram of BAM:0009. We can clearly see the main peak and
also the two distinguished secondary peaks.

timeseries.
After that we focus on BAM:0002. Again we can see the characteristics of the

binary system at Table B.1. For this system we have q = 1 meaning that the masses
of the two neutron stars are equal and thus we can use the Equations (4.4) to (4.6).
From [28] we expect that this set of equations provides a more accurate description
of the main and secondary peaks, having a smaller RMS error, and we choose to use
them when possible.

From the masses and EOS of the two neutron stars we expect a type III merger,
meaning that the postmerger spectrum should have the fspiral as the most dominant
from the two secondary peaks. We can see the Figures 5.8 and 5.9. As expected the
FFT of the Time Domain gives us the main peak and a clear secondary peak. The
other secondary peak is not obvious, because of its small amplitude. Drawing the
lines from the equations mentioned, the fspiral falls into agreement with the secondary
peak with great accuracy. We also have an agreement with the main peak, but with
some error. All of these information agree with our classification of the merger as
type III. This is actually a great example because fspiral is so dominant in compare
to f2−0. Moreover the agreement of our expected frequency with the actual peak
is great, telling us that it is indeed the inspiral and also confirming the equations
from [28]. The f2+0 fails to find a high frequency peak, which is something to be
expected since the (2-0) secondary peak is not relevant for this case.

Lastly we want to see the spectrogram. In fig. 5.10 we can see the main peak
and one secondary peak. As in all the previous mergers, the main peak has an effect
on all the postmerger time domain. The secondary peak (in this case the inspiral)
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Figure 5.8: The linear frequency plot for BAM:0002. It is a type III binary neutron
star merger as we can see from the dominant secondary peak which is the inspiral
fspiral. The lines come from Equations (4.4) to (4.6), for q = 1 because the masses
of the binary system are equal.
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Figure 5.9: A logarithmic view of the BAM:0002 frequency spectrum.
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Figure 5.10: The spectrogram of BAM:0002. There are two obvious peaks, one is
the dominant main peak and the second is the inspiral secondary peak

only affects the first few milliseconds, and thus appears with smaller amplitude on
the frequency spectrum fig. 5.8.
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5.2 Sacra
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Figure 5.11: The three mergers from the Sacra catalog that will be discussed in
this chapter. We can clearly see that they represent all three types as discussed in
chapter 4. For more information about this type of figure you can see 4.1.

The SACRA Gravitational Waveform Data Bank [29] is available at (http://www2.
yukawa.kyoto-u.ac.jp/~nr_kyoto/SACRA_PUB/catalog.html). We analyzed the
whole catalog and produced the results in the same fashion as we did with CoRe
catalog. We have the M(R) diagram of the whole set at fig. C.1.Again we will
present three cases one from each type. Informations about the whole catalog can
be found in Table C.2.

The names of the different simulations on this catalog are in the form of EOS mass1 mass2,
so for example when we see 125H 112 140 it means that the EOS is 125H and that
the system has M1 = 1.12M⊙ and M2 = 1.40M⊙

The EOS used in this catalog are a bit different from the ones described in
chapter 2. They also use piecewise polytropic EOS but with less parameters. The
polytropic equation is:

P =

{
K0ρ

Γ0 if ρ0 ≤ ρ < ρ1
K1ρ

Γ1 if ρ1 ≤ ρ,
(5.2)

where ρ is the rest-mass density, P is the pressure, K0 and K1 are a polytropic
constant, and Γ0 and Γ1 are an adiabatic index. At the boundary of these two
piecewise polytropes, ρ = ρ1, the pressure is required to be continuous K0ρ

Γ0
1 =

K1ρ
Γ0
1 , thus the parameters, which have to be given are K0, ρ1,Γ0,Γ1.
This process is described in detail at [29]. It was chosen to have a fixed low-

density part with Γ0 = 1.3562395 and K0 = 3.594 × 1013 in cgs units. Also the
adiabatic index for the high density part was chosen to be Γ1 = 3 leaving K1 to be
defined from: K1 = K0ρ

Γ0−Γ1
1 . Lastly the value of ρ1 is what defines each different

EOS in this catalog.
You can see the values of the densities at Table C.1. For more informations

about the EOS used in this catalog you can read [30].
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Figure 5.12: The linear frequency plot for B 107 146. It is a type I binary neutron
star merger as we can see from the dominant secondary peak which is the non linear
combination frequency f2−0.

The first simulation is B 107 146 . We can see the postmerger frequency spec-
trum in fig. 5.12. Being a typical Type I merger, we have the f2−0 as the most
dominant of the secondary peaks. The inspiral peak is not visible, because it gets
covered by the nonlinear combination frequency. This is also obvious on the loga-
rithmic scale (fig. 5.13).

The prediction of the fpeak and f2−0 is really accurate. Especially for the f2−0,
the fact that it falls exactly on the actual peak, helps us be sure that it is indeed
the (2-0) and not the inspiral. For the f2+0 in this case, we can see a clear peak at
around 4.7 kHz, which is predicted by our line.

The spectrogram (fig. 5.14) confirms all the observations from the frequency
figures. We can clearly see one secondary peak at around 2.2 kHz. The main peak
is spreading through the whole postmerger phase, while the secondary peak is only
relevant in the early stages.

The next simulation from this catalog we will analyze is 15H 116 158 . As before
we have the characteristics of the system at Table C.2. In this Type II postmerger
spectrum we have two equally important secondary peaks (fig. 5.15). They are
both covered from our predictions with good accuracy making it easy to distinguish
between the two. The logarithmic scale in fig. 5.16 makes it a bit easier to separate
the two independent secondary peaks. We can also see that the expected fpeak falls
a bit off the actual peak but we still get the area at which we expect to find it. The
dashed line for the (2+0) frequency is very close to an actual peak in the postmerger
spectrum. It becomes even more apparent in the logarithmic scale.

The spectrogram at fig. 5.17 although not clear shows that there are indeed two
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Figure 5.13: Again the B 107 146 in logarithmic scale

Figure 5.14: The spectrogram of B 107 146. We can clearly see the main peak and
also one secondary peak above 2 kHz .

33



5.2. SACRA

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency (Hz)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Type II
peak
2-0
spiral
2+0

Figure 5.15: The linear frequency plot for 15H 116 158. It is a type II binary neutron
star merger. The level of the inspiral and 2-0 secondary peaks are almost equal.
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Figure 5.16: The frequency spectrum for 15H 116 158 in logarithmic scale.
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Figure 5.17: The spectrogram of 15H 116 158.

individual secondary peaks. This confirms that it is actually a Type II merger as we
expect from our classification and the M(R) diagram at fig. 5.11. We can also see
a small peak at around 3.5 kHz, where the (2+0) secondary peak should appear.

The last waveform from the Sacra catalog that will be discussed in this thesis
is 15H 125 125 . We can see the fourier plots in Figures 5.18 and 5.19. We see
the main peak and one obious secondary peak. We can identify this peak as the
inspiral because it is exactly where we would expect the fspiral to be. The f2−0 line
finds a small peak which becomes more clear in the logarithmic scale. As a Type III
postmerger spectrum we expect the inspiral to be more dominant than the nonlinear
combination frequency. This binary has a mass ratio of 1 meaning we can use the
equations for q = 1 (Equations (4.4) to (4.6)). The accuracy for this case is great,
especially on the secondary peaks, being able to accurately predict the frequency for
even the dim (2-0) peak. The f2+0 line falls near a local maximum, although due to
the lack of accuracy we can not be certain that this peak is actually the (2+0) peak
predicted by the eq. (5.1)

The spectrogram at fig. 5.20 shows the same picture. We can see how the inspiral
frequency is only relevant for almost 4 milliseconds, while the main peak is still strong
at 11 to 12 milliseconds.
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Figure 5.18: The linear frequency plot for 15H 125 125. It is a type III binary
neutron star merger as we can see from the dominant secondary peak which is the
inspiral fspiral. The lines come from Equations (4.4) to (4.6), for q = 1 because the
masses of the binary system are equal.
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Figure 5.19: A logarithmic view of the 15H 125 125 frequency spectrum.
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Figure 5.20: The spectrogram of 15H 125 125. There is only one visible secondary
peak, which as discussed is the fspir

5.3 Takami and Rezzolla

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0
Radius (km)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
as

s (
so

la
r m

as
se

s)

ALF2-q10-M1400
ALF2-q10-M1300
H4-q10-M1200

Figure 5.21: The three mergers from the Takami and Rezzolla catalog that will be
discussed in this chapter. We can clearly see that they represent all three types as
discussed in chapter 4. For more information about this type of figure you can see
4.1
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Figure 5.22: The linear frequency plot for ALF2-q10-M1400. It is a type I binary
neutron star merger. The f2−0 has bigger amplitude than the fspiral

The Gravitational-Waveform Catalog [31] from Luciano Rezzolla and Kentaro Takami
is available at (http://www.kobe-kosen.ac.jp/~takami/KTakami/contents/research/
public_data/GW_Catalog/GW_Catalog_en.html). We analyzed the whole catalog
and produced the results in the same fashion as we did with the previous catalogs.
The M(R) diagram of the whole catalog is at fig. D.1.We will present, as before,
three cases, one from each type. Informations about the whole catalog can be found
in table D.1

The names of the different simulations of the catalog are in the form of EOS-
q-Mass meaning that the simulation named SLy-q10-M1200 has the EOS of SLy,
with mass ratio q = 1 and the mass of the first member of the binary system is
M1 = 1.2M⊙

The first simulation from this catalog that will be presented is ALF2-q10-M1400
. From the masses and EOS of the system we should expect a type I merger meaning
that the f2−0 will be the most dominant of the low frequency secondary peaks. It
is also a q = 1 case which means we can use Equations (4.4) to (4.6) for our lines.
We can see the results of the analysis on Figures 5.22 and 5.23. We find one really
dominant secondary peak (after the main peak) which should be the (2-0). As we
see the lines can’t tell us which of the two is, however the line for the fspir accurately
predicts one smaller but visible peak and this leads us to assume that the dominant
secondary peak is indeed the nonlinear combination frequency.

On the spectrogram at fig. 5.24 we have more evidence to support our claim
that the f2−0 is the secondary peak with the biggest amplitude. We find two sec-
ondary peaks, from which the first appears to have bigger amplitude and the second
is clearly noticeable but smaller. This is the typical picture of a type I postmerger
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Figure 5.23: Again the ALF2-q10-M1400 in logarithmic scale

spectrogram, because (2-0) frequency peaks are in lower frequencies than the inspi-
ral. In this spectrogram we see that the main peak behaves in bit of a peculiar way.
At around 6 milliseconds after the merger, it starts to spread at higher frequencies.

On the second simulation we have ALF2-q10-M1300. We have once more a mass
ratio of 1 so we employ Equations (4.4) to (4.6). The results of the analysis are
shown in Figures 5.25 and 5.26.

We should expect a type II merger as we can see at our diagram in fig. 5.21.
Indeed we find the two secondary peaks and although fspiral has a bigger amplitude,
we can see that they are both comparable. Especially on the logaritmic plot it is
obvious that there is not a huge gap between the two. One more thing that should be
noted is the great accuracy we get between the expected frequencies and the actual
peaks for this simulation. Also the line for the (2+0) high frequency secondary peak
falls exactly on a local maximum of the postmerger frequency spectrum. It is best
shown on the log scale at fig. 5.26.

The spectrogram at fig. 5.27 shows both of the secondary peaks, and we can
clearly see that the one at higher frequencies is bigger. We can also note that the
main peak is still strong after 23 milliseconds, while the secondary peaks only last
for around 4.

Last we have our type III merger from the simulation H4-q10-M1200. Once
again we have q = 1 and so we use Equations (4.4) to (4.6). This is a typical type
III postmerger spectrum as we can see at Figures 5.28 and 5.29. The f2−0 is not
completely absent as there is a small peak at around 940 Hz where we should expect
it based on our equations. However it is the inspiral secondary peak which is clearly
bigger. The difference becomes even more apparent at the logarithmic scale.

The accuracy of our lines is once again great, helping as distinguish between

39



5.3. TAKAMI AND REZZOLLA

Figure 5.24: The spectrogram of ALF2-q10-M1400. We can see the main peak and
also the two secondary peaks above and below 2 kHz. Also one high frequency peak.
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Figure 5.25: The linear frequency plot for ALF2-q10-M1300. We can see that the
inspiral and (2-0) frequency amplitudes are almost at the same level.
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Figure 5.26: The frequency spectrum for ALF2-q10-M1300 in logarithmic scale.

Figure 5.27: The spectrogram of ALF2-q10-M1300. We can see the main peak ,the
two distinguished secondary peaks and also a small high-frequency secondary peak.
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Figure 5.28: The linear frequency plot for H4-q10-M1200. It is a type III binary
neutron star merger as we can see from the dominant secondary peak which is the
inspiral fspiral.

the different peaks. On the log scale we can see that we can accurately predict the
(2+0) peak, even if it is not so apparent, especially on a linear scale.

The spectrogram fig. 5.30 shows only one secondary peak, which from our pre-
vious discussion is the fspiral. We can see how it affects only the early postmerger
stages and has no affect at the later stages.
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Figure 5.29: A logarithmic view of the H4-q10-M1200 frequency spectrum.

Figure 5.30: The spectrogram of H4-q10-M1200. There are two obvious peaks, one
is the dominant main peak and the second is the inspiral secondary peak.
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Appendix A

EOS
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Figure A.1: The M(R) figure for all the EOS that were used during this thesis.

Table A.1: The characteristic radii for masses 1.6M⊙ and 1.8M⊙ used in Equa-
tions (4.1) to (4.6) for every EOS used in this thesis.

EOS R1.6(km) R1.8(km) EOS R1.6(km) R1.8(km)

SLy 11.55 11.27 15H 13.65 13.61
H4 13.74 13.32 125H 12.89 12.82
MS1 14.95 14.95 H 12.16 12.04
MPA1 12.47 12.46 HB 11.45 11.26
ALF2 12.64 12.40 B 10.75 10.47
MS1b 14.60 14.65 APR4 11.26 11.13
ENG 11.92 11.79 GNH3 13.79 13.12
2H 15.76 15.70
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Figure A.2: The love number as a relation of mass for all the EOS that were used
during this thesis. You can see the discussion at chapter 2.
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Figure A.3: The dimensionless tidal deformability as a relation of mass for all the
EOS that were used during this thesis. More information about this type of figures
at chapter 2.
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Appendix B

CoRe

You can find the M(R) diagram containing the whole dataset used for this thesis at
fig. 4.1

The results of the whole dataset should be available here https://github.com/
johnkou97/postmerger_frequencies/tree/master/results. You can also use
the scripts which are available at https://github.com/johnkou97/postmerger_

frequencies in order to reproduce the results or test anything you might want

Table B.1: The data for all the CoRe simulations. From
left to right we have the ID number (from the BAM CoRe
catalog), the EOS, the total mass of the system in solar
masses, the mass ratio of the binary, the chirp Mass of
the system, the main and secondary peaks frequency as
expected from [28] in kHz and if the mass ratio is 1 we
have the frequencies from Equations (4.1) to (4.3). The
last collumn shows the type of the merger as discussed
in chapter 4.

ID # EOS Mass q Mchirp fpeak fspir f2−0 f q=1
peak f q=1

spir f q=1
2−0 Type

002 2H 2.70 1.00 1.18 1.99 1.35 0.94 2.01 1.50 0.91 3
003 ALF2 2.70 1.00 1.18 2.81 2.11 1.56 2.79 2.15 1.58 1
004 ALF2 2.70 1.00 1.18 2.81 2.11 1.57 2.79 2.15 1.59 1
009 ALF2 2.50 1.27 1.08 2.62 1.93 1.34 - - - 2
010 ALF2 2.70 1.16 1.17 2.80 2.11 1.56 - - - 1
022 ENG 2.70 1.00 1.18 3.06 2.33 1.89 3.11 2.36 1.90 1
035 H4 2.70 1.00 1.18 2.48 1.83 1.20 2.40 1.89 1.22 3
036 H4 2.70 1.00 1.18 2.48 1.83 1.20 2.40 1.89 1.22 3
046 H4 2.70 1.16 1.17 2.48 1.83 1.19 - - - 3
048 H4 2.75 1.25 1.19 2.50 1.85 1.22 - - - 2
053 H4 2.75 1.50 1.17 2.47 1.82 1.19 - - - 2
057 H4 2.75 1.75 1.14 2.43 1.79 1.14 - - - 2
058 MPA1 2.70 1.00 1.18 2.78 2.09 1.64 2.86 2.13 1.65 1
059 MS1 2.70 1.16 1.17 2.09 1.46 0.97 - - - 3
061 MS1 2.70 1.00 1.18 2.09 1.47 0.98 2.12 1.58 0.98 3
065 MS1b 2.70 1.00 1.18 2.15 1.52 1.02 2.18 1.63 1.03 3

Continued on next page
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Table B.1 – Continued from previous page

ID # EOS Mass q Mchirp fpeak fspir f2−0 f q=1
peak f q=1

spir f q=1
2−0 Type

070 MS1b 2.75 1.00 1.20 2.17 1.54 1.05 2.21 1.64 1.07 3
080 MS1b 2.50 1.27 1.08 2.06 1.46 0.90 - - - 3
089 MS1b 2.75 1.25 1.19 2.16 1.53 1.04 - - - 3
090 MS1b 3.20 1.00 1.39 2.39 1.71 1.33 2.46 1.82 1.37 2
091 MS1b 2.75 1.50 1.17 2.14 1.52 1.01 - - - 3
092 MS1b 3.40 1.00 1.48 2.52 1.82 1.47 2.58 1.92 1.51 2
093 MS1b 2.75 1.75 1.14 2.12 1.50 0.98 - - - 3
098 SLy 2.70 1.00 1.18 3.30 2.53 2.08 3.30 2.55 2.08 1
107 SLy 2.46 1.22 1.06 3.01 2.24 1.75 - - - 1
121 SLy 2.50 1.27 1.08 3.05 2.27 1.79 - - - 1
122 SLy 2.60 1.17 1.13 3.17 2.40 1.94 - - - 1
123 SLy 2.70 1.16 1.17 3.29 2.52 2.07 - - - 1
124 SLy 2.50 1.50 1.06 3.00 2.23 1.74 - - - 1
126 SLy 2.75 1.25 1.19 3.34 2.56 2.13 - - - 1
128 SLy 2.75 1.50 1.17 3.28 2.50 2.06 - - - 1
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Appendix C

Sacra

The results of the whole dataset should be available here https://github.com/

johnkou97/sacra/tree/master/results. You can also use the scripts which are
available at https://github.com/johnkou97/sacra in order to reproduce the re-
sults or test anything you might want
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Figure C.1: The M(R) diagram for every simulation from the Sacra Catalog. It also
shows the type of the merger as explained in chapter 4.

Table C.1: The values of the density at the turning point of each EOS for the Sacra
Catalog. Each density is what defines every EOS.

EOS ρ [g cm−3]

15H 9.3108× 1013

125H 1.0711× 1014

H 1.2323× 1014

HB 1.4177× 1014

B 1.6309× 1014
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Table C.2: The data for all the Sacra simulations. From
left to right we have the EOS, the total mass of the system
in solar masses, the mass ratio of the binary, the main
and secondary peaks frequency as expected from [28] in
kHz and if the mass ratio is 1 we have the frequencies
from Equations (4.1) to (4.3). We have also the (2+0)
frequency from eq. (5.1). The last column shows the type
of the merger as discussed in chapter 4.

EOS Mass q Mchirp fpeak fspir f2−0 f2+0 f q=1
peak f q=1

spir f q=1
2−0 f q=1

2+0 Type

15H 2.70 1.00 1.18 2.40 1.76 1.22 3.57 2.43 1.82 1.25 3.61 2
15H 2.71 1.17 1.18 2.40 1.76 1.22 3.57 - - - - 2
15H 2.50 1.00 1.09 2.28 1.65 1.07 3.49 2.29 1.72 1.08 3.50 3
15H 2.72 1.25 1.18 2.40 1.76 1.22 3.57 - - - - 2
15H 2.73 1.31 1.18 2.40 1.76 1.22 3.57 - - - - 2
15H 2.73 1.33 1.17 2.40 1.75 1.22 3.57 - - - - 2
15H 2.74 1.36 1.18 2.40 1.76 1.22 3.57 - - - - 2
15H 2.52 1.25 1.09 2.28 1.65 1.07 3.49 - - - - 3
15H 2.53 1.36 1.09 2.28 1.65 1.07 3.48 - - - - 3
125H 2.70 1.00 1.18 2.65 1.98 1.47 3.84 2.69 2.03 1.49 3.89 2
125H 2.71 1.17 1.18 2.65 1.98 1.47 3.84 - - - - 1
125H 2.50 1.00 1.09 2.50 1.84 1.28 3.72 2.53 1.88 1.29 3.77 2
125H 2.72 1.25 1.18 2.65 1.98 1.47 3.84 - - - - 1
125H 2.73 1.31 1.18 2.65 1.98 1.47 3.84 - - - - 1
125H 2.73 1.33 1.17 2.65 1.98 1.46 3.83 - - - - 1
125H 2.74 1.36 1.18 2.65 1.98 1.47 3.84 - - - - 1
125H 2.52 1.25 1.09 2.50 1.84 1.28 3.72 - - - - 2
125H 2.53 1.36 1.09 2.49 1.83 1.27 3.72 - - - - 2
H 2.70 1.00 1.18 2.95 2.24 1.77 4.13 3.00 2.27 1.78 4.21 1
H 2.71 1.17 1.18 2.95 2.24 1.77 4.13 - - - - 1
H 2.50 1.00 1.09 2.76 2.05 1.55 3.98 2.81 2.08 1.55 4.07 1
H 2.72 1.25 1.18 2.95 2.24 1.77 4.13 - - - - 1
H 2.73 1.31 1.18 2.95 2.24 1.77 4.13 - - - - 1
H 2.73 1.33 1.17 2.95 2.23 1.77 4.13 - - - - 1
H 2.74 1.36 1.18 2.95 2.24 1.77 4.13 - - - - 1
H 2.52 1.25 1.09 2.76 2.05 1.55 3.98 - - - - 1
H 2.53 1.36 1.09 2.76 2.04 1.54 3.98 - - - - 1
HB 2.70 1.00 1.18 3.30 2.53 2.14 4.47 3.35 2.55 2.13 4.57 1
HB 2.71 1.17 1.18 3.30 2.53 2.14 4.47 - - - - 1
HB 2.50 1.00 1.09 3.07 2.30 1.87 4.28 3.13 2.32 1.86 4.40 1
HB 2.72 1.25 1.18 3.30 2.53 2.14 4.47 - - - - 1
HB 2.73 1.31 1.18 3.30 2.53 2.14 4.47 - - - - 1
HB 2.73 1.33 1.17 3.30 2.52 2.13 4.47 - - - - 1
HB 2.74 1.36 1.18 3.31 2.53 2.14 4.47 - - - - 1
HB 2.52 1.25 1.09 3.08 2.30 1.87 4.28 - - - - 1
HB 2.53 1.36 1.09 3.07 2.29 1.86 4.28 - - - - 1
B 2.70 1.00 1.18 3.71 2.86 2.56 4.87 3.75 2.89 2.52 4.97 1

Continued on next page
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Table C.2 – Continued from previous page

EOS Mass q Mchirp fpeak fspir f2−0 f2+0 f q=1
peak f q=1

spir f q=1
2−0 f q=1

2+0 Type

B 2.71 1.17 1.18 3.71 2.86 2.56 4.87 - - - - 1
B 2.50 1.00 1.09 3.44 2.58 2.24 4.64 3.50 2.61 2.21 4.78 1
B 2.72 1.25 1.18 3.71 2.86 2.56 4.87 - - - - 1
B 2.73 1.31 1.18 3.71 2.86 2.56 4.87 - - - - 1
B 2.73 1.33 1.17 3.71 2.86 2.55 4.86 - - - - 1
B 2.74 1.36 1.18 3.71 2.87 2.56 4.87 - - - - 1
B 2.52 1.25 1.09 3.44 2.59 2.24 4.64 - - - - 1
B 2.53 1.36 1.09 3.43 2.58 2.23 4.63 - - - - 1
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Appendix D

Takami and Rezzolla

The results of the whole dataset should be available here https://github.com/

johnkou97/takami/tree/master/results. You can also use the scripts which are
available at https://github.com/johnkou97/takami in order to reproduce the re-
sults or test anything you might want
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Figure D.1: The M(R) diagram for every simulation from the Takami and Rezzolla
Catalog. It also shows the type of the merger as explained in chapter 4.
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Table D.1: The data for all the Takami and Rezzolla Cat-
alog simulations. From left to right we have the EOS, the
total mass of the system in solar masses, the mass ratio
of the binary, the main and secondary peaks frequency
as expected from [28] in kHz and if the mass ratio is 1
we have the frequencies from Equations (4.1) to (4.3).
We have also the (2+0) frequency from eq. (5.1). The
last column shows the type of the merger as discussed in
chapter 4.

EOS Mass q Mchirp fpeak fspir f2−0 f2+0 f q=1
peak f q=1

spir f q=1
2−0 f q=1

2+0 Type

ALF2 2.40 1.00 1.04 2.55 1.87 1.27 3.84 2.54 1.91 1.28 3.80 2.00
ALF2 2.45 1.00 1.07 2.59 1.91 1.32 3.87 2.58 1.95 1.33 3.83 2.00
ALF2 2.50 1.00 1.09 2.64 1.95 1.36 3.91 2.62 1.99 1.38 3.86 2.00
ALF2 2.55 1.00 1.11 2.68 1.99 1.41 3.94 2.66 2.03 1.43 3.90 2.00
ALF2 2.60 1.00 1.13 2.72 2.03 1.46 3.98 2.70 2.07 1.48 3.93 2.00
ALF2 2.65 1.00 1.15 2.76 2.07 1.51 4.01 2.75 2.11 1.53 3.96 1.00
ALF2 2.70 1.00 1.18 2.81 2.11 1.56 4.05 2.79 2.15 1.58 3.99 1.00
ALF2 2.75 1.00 1.20 2.85 2.16 1.62 4.09 2.83 2.20 1.64 4.02 1.00
ALF2 2.80 1.00 1.22 2.90 2.20 1.67 4.13 2.87 2.24 1.69 4.05 1.00
ALF2 3.00 1.00 1.31 3.09 2.40 1.89 4.30 3.04 2.44 1.91 4.18 1.00
APR4 2.40 1.00 1.04 3.02 2.23 1.82 4.21 3.11 2.26 1.82 4.41 1.00
APR4 2.45 1.00 1.07 3.07 2.29 1.89 4.26 3.17 2.31 1.88 4.46 1.00
APR4 2.50 1.00 1.09 3.13 2.34 1.96 4.30 3.23 2.37 1.95 4.50 1.00
APR4 2.55 1.00 1.11 3.19 2.40 2.03 4.35 3.28 2.43 2.02 4.54 1.00
APR4 2.60 1.00 1.13 3.25 2.46 2.10 4.39 3.34 2.48 2.09 4.59 1.00
APR4 2.65 1.00 1.15 3.31 2.52 2.17 4.44 3.40 2.54 2.16 4.63 1.00
APR4 2.70 1.00 1.18 3.37 2.58 2.25 4.49 3.45 2.61 2.23 4.67 1.00
APR4 2.75 1.00 1.20 3.43 2.65 2.32 4.54 3.51 2.67 2.30 4.72 1.00
APR4 2.80 1.00 1.22 3.49 2.71 2.40 4.59 3.57 2.73 2.37 4.76 1.00
APR4 3.00 1.00 1.31 3.76 2.99 2.71 4.81 3.80 3.01 2.67 4.93 1.00
GNH3 2.40 1.00 1.04 2.34 1.70 0.97 3.72 2.19 1.76 0.97 3.41 3.00
GNH3 2.45 1.00 1.07 2.38 1.73 1.01 3.75 2.22 1.78 1.01 3.44 3.00
GNH3 2.50 1.00 1.09 2.41 1.76 1.04 3.78 2.26 1.82 1.05 3.46 3.00
GNH3 2.55 1.00 1.11 2.44 1.79 1.08 3.81 2.29 1.85 1.09 3.49 3.00
GNH3 2.60 1.00 1.13 2.48 1.82 1.11 3.84 2.32 1.88 1.13 3.51 3.00
GNH3 2.65 1.00 1.15 2.51 1.86 1.15 3.88 2.35 1.91 1.17 3.54 3.00
GNH3 2.70 1.00 1.18 2.55 1.89 1.19 3.91 2.39 1.94 1.21 3.56 3.00
GNH3 2.75 1.00 1.20 2.59 1.92 1.23 3.95 2.42 1.98 1.25 3.59 3.00
GNH3 2.80 1.00 1.22 2.62 1.96 1.26 3.98 2.45 2.01 1.29 3.61 2.00
GNH3 3.00 1.00 1.31 2.78 2.12 1.42 4.14 2.58 2.17 1.46 3.71 2.00
GNH3 2.55 0.82 1.10 2.43 1.78 1.07 3.80 - - - - 3.00
GNH3 2.60 1.08 1.13 2.48 1.82 1.11 3.84 - - - - 3.00
H4 2.40 1.00 1.04 2.29 1.66 0.98 3.60 2.20 1.72 0.98 3.42 3.00
H4 2.45 1.00 1.07 2.32 1.69 1.02 3.63 2.24 1.74 1.02 3.45 3.00
H4 2.50 1.00 1.09 2.35 1.71 1.05 3.66 2.27 1.77 1.06 3.48 3.00
H4 2.55 1.00 1.11 2.39 1.74 1.09 3.68 2.30 1.80 1.10 3.50 3.00

Continued on next page
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Table D.1 – Continued from previous page

EOS Mass q Mchirp fpeak fspir f2−0 f2+0 f q=1
peak f q=1

spir f q=1
2−0 f q=1

2+0 Type

H4 2.60 1.00 1.13 2.42 1.77 1.12 3.71 2.33 1.83 1.14 3.53 3.00
H4 2.65 1.00 1.15 2.45 1.80 1.16 3.74 2.37 1.86 1.18 3.55 3.00
H4 2.70 1.00 1.18 2.48 1.83 1.20 3.77 2.40 1.89 1.22 3.58 3.00
H4 2.75 1.00 1.20 2.52 1.86 1.24 3.80 2.43 1.92 1.26 3.60 2.00
H4 2.80 1.00 1.22 2.55 1.90 1.28 3.83 2.46 1.96 1.30 3.63 2.00
H4 3.00 1.00 1.31 2.70 2.04 1.44 3.97 2.60 2.10 1.47 3.73 2.00
SLy 2.40 1.00 1.04 2.96 2.19 1.69 4.23 2.98 2.22 1.69 4.27 1.00
SLy 2.45 1.00 1.07 3.02 2.24 1.75 4.28 3.03 2.27 1.75 4.31 1.00
SLy 2.50 1.00 1.09 3.07 2.30 1.82 4.33 3.09 2.32 1.82 4.35 1.00
SLy 2.55 1.00 1.11 3.13 2.35 1.88 4.37 3.14 2.38 1.88 4.40 1.00
SLy 2.60 1.00 1.13 3.18 2.41 1.95 4.42 3.19 2.43 1.95 4.44 1.00
SLy 2.65 1.00 1.15 3.24 2.47 2.02 4.47 3.24 2.49 2.01 4.48 1.00
SLy 2.70 1.00 1.18 3.30 2.53 2.08 4.52 3.30 2.55 2.08 4.52 1.00
SLy 2.75 1.00 1.20 3.36 2.59 2.15 4.57 3.35 2.61 2.15 4.56 1.00
SLy 2.80 1.00 1.22 3.42 2.65 2.22 4.62 3.41 2.67 2.21 4.60 1.00
SLy 3.00 1.00 1.31 3.68 2.92 2.52 4.84 3.62 2.94 2.49 4.76 1.00
SLy 2.55 0.82 1.10 3.11 2.34 1.86 4.36 - - - - 1.00
SLy 2.60 1.08 1.13 3.18 2.41 1.95 4.42 - - - - 1.00
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