Tabular Reinforcement Learning
A Table-Turning Approach to Learning Optimal Actions

Ioannis Koutalios (s3365530)'

1. Introduction

In this assignment, we will be exploring various tabular
reinforcement learning algorithms. In reinforcement learn-
ing, we have an agent that interacts with the environment
and tries to learn and make decisions in order to maximize
the cumulative reward. The way the agent learns is best
described by the process of trial and error, where the agent
tries different paths in order to find the optimal. The agent
can also exploit an already-known path to the goal-state.

In tabular reinforcement learning the agent maintains a table
to store the values of different state-action pairs. The agent
tries to estimate the value function as best as possible by
doing that, it essentially learns the environment and finds
the optimal path.

The environment we will use in this assignment is called
“Stochastic Windy Gridworld” and is an adaptation of an
example used in Andrew (1999). The environmentisa 10x 7
grid. The agent can move through the grid in 4 different
ways (up, down, left, right). The wind affects the movement
of our agent, in columns 3, 4, 5, 8 the agent is pushed one
step up, while in columns 6, 7 it is pushed two steps up. The
stochasticity comes from the fact that the wind only affects
our agent 80% of the time. The agent receives a reward of
—1 in every cell except in the goal-state where it gets a +40
reward. The agent starts at the grid position [0, 3] and the
goal-state is at [7, 3].

During this assignment, we will explore various tabular re-
inforcement learning algorithms. Firstly in Section 2 we
will test the dynamic programming algorithm, in which we
have access to the environment. As will be discussed this
is an ideal case and is guaranteed to find the optimal policy.
After that, we will experiment with model-free algorithms.
In Section 3 we will implement and test various algorithms
such as the Q-learning, SARSA, and Monte Carlo. All of
them use tabular reinforcement learning but have impor-
tant differences that should be compared for their efficiency

"Leiden Observatory, Leiden University, P.O. Box 9513, 2300

RA Leiden, The Netherlands. Correspondence to: Ioannis Koutal-
ios <koutalios @mail.strw.leidenuniv.nl>.

1st Assignment for the course of Reinforcement Learning,

and performance in our environment. This process is re-
peated in Appendix A where we more carefully tune some
important parameters to achieve better results. Finally, in
Section 4 we will summarize all the things we derived from
the experiments and try to draw some conclusions.

2. Dynamic Programming

In tabular reinforcement learning the method of dynamic
programming is used in order to find the optimal policy for
an agent given the environment. To achieve that we have to
recursively calculate for each state in our environment the
expected value we will get for taking each action.

There are two main types of dynamic programming. The
first one is policy iteration which involves two steps: pol-
icy evaluation and policy improvement. The second type
is called value iteration which recursively updates the ex-
pected values for each state-action pair. In our implementa-
tion, we will use a form of value iteration and specifically
the Q-value iteration which will be discussed extensively.

Dynamic programming techniques are guaranteed to con-
verge in a finite amount of iterations to the optimal policy.
There are although some conditions that the environment
should satisfy. It should have a finite and discrete space of
state-action pairs. The environment should also be Marko-
vian, meaning that the future state of the environment only
depends on the current state and not on the previous steps
that were taken.

The limitations of dynamic programming are making its
implementation rare in real-world problems. We can only
use this method when we have perfect knowledge of the
environment which is not something that usually happens in
most problems. Dynamic programming also suffers from the
curse of dimensionality and is computationally expensive,
especially for complex problems. One additional problem
is that it can not handle continuous state-action spaces, as is
the case for all tabular methods.

2.1. Methods

As we already briefly discussed we will implement a Q-
value iteration algorithm to solve the environment we were

Tabular Reinforcement Learning

provided with. This method involves multiple iterations
over the whole state-action space where we use the discrete
Bellman equation to update the values.

From (Plaat, 2022) we have the Bellman equation:

V(s) 3 wals)[3 pals, s)lrals,) + V()]

acA s'es
ey

where V is the value, 7 is the probability of the action a
given the state s, p is the stochastic transition function, r is
the reward function, and -y is the discount rate.

For our implementation where instead of using the value
we want to calculate the Q-value we derive the following
equation:

Q(S7 a) — Z p(3/|57 a)[T(S’ a, S/) +7- IIZ@XQ(S/, a/)]

s'eS
(2)
where @ is the Q-value.

As it becomes clear from the above equations, in order to
use the Bellman equation, we need to know the transition
function and the reward function. This information is not
usually known by the agent as they come directly from
the environment in which we try to learn. If we, however,
have access to the environment (as is the case for this task)
we can implement the Q-value iteration algorithm which is
guaranteed to converge to the optimal policy after a finite
amount of iterations.

The algorithm is described in Algorithm 1 and is an imple-
mentation of the basic value iteration pseudocode that is
described in Plaat (2022)

Algorithm 1 Q-value iteration

Input: threshold n € R+
Initialize Q(s,a) = 0.
repeat
A=0
for sin S do
for a in a do
T = Q(Sv a)
update the Q(s, a) using Equation (2)
A =max(A, |z — Q(s,a)|)
end for
end for
until A < n
Return: Q(s,a)

The goal state in our environment is terminal. This means
that all the values of Q(s = goal,a) should be 0. In our
implementation, we treat the terminal state as any other state.
The optimal policy will converge to the desired Q-values
because the optimal policy in the terminal state is to take no

action and receive the reward. One other way of solving the
issue of the terminal state is to possibly exclude it from the
training and modify the updating rule accordingly.

2.2. Results

After implementing the algorithm that we have already dis-
cussed we can see that our Q-values converge to the optimal
policy after 18 iterations. In Figure 1 we can see the pro-
gression of this convergence at the beginning (1st iteration),
midway (10th iteration), and at convergence (18th iteration).

After the first iteration, we can see that the Q-values are gen-
erally low with some small exceptions. The only values that
are high are near the terminal state and on the path, that will
eventually be followed by the agent in the optimal policy. At
the midway point, the Q-values are becoming higher and are
more stable, especially the ones on the path of the optimal
policy. Finally, after the algorithm has converged we have
the whole picture and the final optimal policy which the
agent will follow.

During the execution of the algorithm, we are interested in
calculating various other values to get a better understanding
of our code and how it works. The first value we get is the
optimal value at the start state which is

V*(s = start) = maxQ(s = start,a) = 23.3
a

. Two other values we are interested in are the average
reward per time step and the average number of steps under
optimal policy. To compute these we have the agent repeat
the process under the optimal policy many times each time
calculating these two values and finally averaging the results.
The reason we do this multiple times is to account for the
stochasticity of our experiments. The final results we get
are 1.33 and 17.6 respectively.

We want to show how all these three values are connected.
We know that the reward for each step of the agent is —1
except when it reaches the goal-state where the reward is
+40. In the optimal policy, our agent will reach the goal-
state at the final step, so we can compute the value V*(s =
start) = (n—1)-(—1)+40 = (17.6—1)-(—1)4+40 = 23.4
(where n is the average number of steps the agent takes in
the optimal policy). We see that this is very close to what
we get from directly measuring the expected value at the
starting point. The average reward can be calculated very
similarly as average(r) = (”71)'(7:1”40 = V*(Sim‘”) =

1.33 which is the value we get when we directly calculate it
during the execution of our code.

One last experiment we make during this task is to change
the position of the terminal state. In our original environ-
ment, it is located at [7, 3] and we change that to [6, 2]. The
first thing we can observe is that we now need 68 iterations
for the algorithm to converge (only 18 in the original prob-

Tabular Reinforcement Learning

lem). Under the optimal policy, the agent now takes more
steps to reach the goal-state, 20.9 on average.

=10 by SO 20
15.6~ 16 556~ 22 B 8~ 2424.0~ 2625.2~2
156| 218 24.0| 252| 263
100 166| 228| 250 262
15.6+ 16 556+ 22 Bl 8~ 2321.0+ 2625.2+-2
156| 218 240 252| 263
100 166| 228| 250 262
15.6- 16 55.6- 22 2.8 2321.0- 2625.2--2
156| 218 240 252| 263

100 166| 228| 250| 262
5.6 2216~ 29 24,0 26 25,2~ 2
6| 21.7| 24.0| 253| 263

100 166| 228| 250| 263
15.6+ 16 556+ 22 71. 7~ 2324.0+ 2625.3+2
154| 215 240| 253| 266
90| 166| 227| 250| 263
15,416 15 4= 22 515 23,0~ 26 25.3=-2
156| 216 243| 257| 275
80| 164| 225| 250 265
15.6~ 16 556~ 23 Bl 6~ 23343~ 2125. 7~
156| 216 243| 254| 275

T
o 3}
32.3]
313
30. 383
33.3
323
31? 33
343
333
@5 3)3
35.3]
343
E::] 3§3
36.3
353
E:) 33
373
36.3
B3 3]3
37.3]

223~ 2322 3~ 2428 3~ 29213~ 26 253~
223| 233| 243| 253| 263
223| 233| 243| 253| 263

22,3+ 2322 3+ 24 28,3+ 2931.3+ 2253+ 2
223| 233| 243| 253| 263
223| 233| 243| 253| 263

223+ 2320 3 24 28 3~ 29313 262532
223| 233| 243| 253| 263

23 233 243| 253| 263
2.3~ 2478, 3~ 291,326 25 3~ 2
3| 233 243| 253| 264

223] 233| 243| 253| 263
22,3+ 2322 3+ 24 28,3+ 2931.3+ 2253+ 2
224| 234| 244| 254| 266
223| 233| 243| 253| 264
22.4-2320.4—24 28 4—2 24 4~ 24 5 421
228| 238| 248 258| 275
224| 23.4| 244| 254 266
228+ 2322 8+ 24 73,8+ 29 B1.8 21 25 8~ 2!
228| 238| 248| 258 275

Figure 1. The Q-value table during different points of the execution
of the Q-value iteration algorithm. From top to bottom, we see the
Ist iteration, 10th iteration, and the 18th and final iteration which
shows the optimal policy. We can see how the algorithm learns
the optimal policy. The values near the goal state have already
converged near the terminal state at the midway point while the
values at states far away only converge at later iterations.

3. Model-free

In model-free reinforcement learning, we no longer have
access to the model. Instead of using our model, the agent
must learn by interacting with the environment in a trial-
error style. The agent can learn by only observing the re-

ceived reward after each transition.

In this assignment, we will discuss three different types of
model-free learning. The first one is the Temporal Differ-
ence, where we use the concept of bootstrapping to learn
the Q-values. Bootstrapping is the process in which we
use the values of the previous state and/or the old values
of the current state to update the value of the current state.
The second type is the Monte Carlo method where we use
the rewards we observed during a whole episode in order
to update the Q-values after the end of each episode. The
third type only uses n-depth to bootstrap and is therefore
somewhere in between the Temporal Difference and Monte
Carlo algorithms.

We will also experiment with the concept of exploration
vs exploitation. During exploitation, the agent is selecting
the optimal action based on its current knowledge of the
environment. In exploration, the agent doesn’t follow this
optimal policy but randomly takes an action. Exploration
is crucial in order to learn new policies that can lead to the
optimal policy.

The next concept we will explore is on-policy vs off-policy
learning. This will be achieved by comparing the perfor-
mance of the Q-learning algorithm (off-policy) and the
SARSA algorithm (on-policy). In off-policy learning, we
bootstrap using the action that has the highest value, while
in on-policy learning we bootstrap using the action that was
actually taken during the episode. By doing this we include
potential exploratory actions, which are not optimal based
on the agent’s knowledge of the environment.

Finally, we want to explore the concept of depth. The n-step
Q-learning algorithm uses n future states to bootstrap. In
Monte Carlo, we do not have any bootstrap and we use all
the rewards observed in each episode. By doing this we
essentially have infinite depth.

3.1. Methods

In order to cover all these we will implement four different
algorithms. We also use two different policies for action
selection. The first is the € — greedy policy:

1—e. VlllAf‘l if a = argmax(Q(s, a’))
m(als) = el ©
IA%I otherwise

where € is a number smaller than 1 (usually much smaller
values). In e — greedy policy we select with probability
1 — ¢ the optimal value, otherwise, we select a random
action. The second policy is the Boltzmann softmax policy:

Q(s,0)/7

Yarea 97
where 7 is a positive number. In the Boltzmann softmax
policy, we use a scaling parameter to scale the amount of

“

m(als) =

Tabular Reinforcement Learning

exploration. When 7 — oo all the actions get the same
probability and we have full exploration while for 7 — 0
we have full exploitation as the probability of the optimal
action goes to 1.

The first algorithm to be implemented is the tabular Q-
learning algorithm. To implement this we need to compute
the back-up estimate:

Gi =1 +7-mazQ(sp1,a) ®)

where G is the target (back-up estimate)

As we can see we use the reward we observed and also take
the Q-value of the optimal action in the next step. We then
apply the general tabular learning algorithm:

Q(st,ar) < Q(st,ar) + - [Gy — Q(se,ar)] (6)
where « is the learning rate (positive value smaller than 1).

The general algorithm is shown in Algorithm 2. After we
initialize the environment the agent selects an action and
takes a step. The action sampling is being done using either
the € — greedy or the Boltzmann softmax policy. We keep
the rewards received by the agent and the next state before
updating the Q-values. We repeat the process until we run
out of the predetermined number of steps we want to allow
our agent to take. If at any point we reach the terminal, we
re-initialize the state.

Algorithm 2 Q-learning Tabular
Input: v, o, (e or 7)
Initialize Q(s,a) =0
Initialize state sg
repeat

sample action
take a step
get reward and next state
update Q-value using eqs. (5) and (6)
budget —=1
if terminal then
Initialize state s
end if
until budget = 0
Return: Q(s,a)

The Q-learning algorithm is an off-policy learning technique.
Next, we implement the SARSA algorithm which uses on-
policy learning. The main difference is in the calculation of
the back-up estimate:

Gy=r+7v-Q(St+1, ar41) @)

As we can see this time we don’t use the value of the best
possible action but rather the action that we actually take.

As discussed before, this might include potential exploratory
actions.

The SARSA Tabular algorithm is otherwise almost identical
to the Q-learning Tabular algorithm (Algorithm 2). The
other difference is that we sample the action after we make
the step as we need this value to calculate G; and we also
need to initialize the action every time we initialize the state
(at the beginning and when we reach the terminal state).

After that, we want to experiment with the depth of tabular
learning algorithms. In order to achieve that we implement
two algorithms, the n-step Q-learning and the Monte Carlo.

For the n-step Q-learning algorithm, we want to calculate
the back-up estimate using:

n—1

Ge=) 7" rigi + 7" maxQ(sipn,a) (8)
=0

where n is the number of steps used for bootstrapping.

As we can see this is a combination of on-policy and off-
policy learning as we use the observed rewards inside the
summation (on-policy), but also we maximize over the last
action (off-policy).

The Monte Carlo algorithm does not use bootstrapping. It
instead sums up all the rewards that were observed during
each episode. By doing this it does not rely on any estimate
of the value function to update the Q-value estimate. The
target is calculated by:

Gr=) 7' i ©)
=0

The general algorithm for the n-step Tabular learning is
shown in Algorithm 3. The new concept here is the episode.
Our algorithm learns in episodes which means that it per-
forms a certain number of steps without updating the Q-
values but keeps a record of all the states, actions, and re-
wards. Then the algorithm uses them to update the Q-values.
The updating is different for the two implementations. In
n-step Q-learning, we have the update described in Algo-
rithm 4, while updating in Monte Carlo is described in
Algorithm 5.

As we can see in n-step Q-learning we use the rewards we
obtained over a certain depth, while in Monte Carlo we
use all the rewards we obtained in each episode without
bootstrapping. The Q-learning update rule also checks if the
final step inside the depth is terminal. This is done because
in Equation (8) we have the maximum Q-value of all the
actions in the final state. If this is the terminal state we are
not able to perform this calculation.

In all of our experiments, we average over 10 repetitions
to account for the stochasticity of the environment. We

Tabular Reinforcement Learning

Algorithm 3 n-step Tabular

Algorithm 5 Monte Carlo update

Input: v, o, ¢, episode length T', depth n
Initialize Q(s,a) =0
repeat
Initialize state s
fort=0to7T — 1do
sample action
take a step
get reward and next state
budget —=1
if terminal then
break
end if
end for
Tep=t+1
update Q-values
until budget = 0
Return: Q(s, a)

Algorithm 4 n-step Q-learning update
fort =0toT,, —1do
m = min(n, Te, — 1)
if s44,, is terminal then
Gr= 00 T
else
calculate target using Equation (8)
end if
update Q-value using Equation (6)
end for

also smooth the plots for better interpretation of the results.
The budget for all the algorithms is set to 50000. The
discount rate () is set to 1.0 and the learning rate () is
set to 0.25. In our first experiment, we test the different
action selection policies, by using the Q-learning algorithm
for the € — greedy and the Boltzmann softmax policy. In
our second experiment, we test on-policy vs off-policy by
comparing the Q-learning algorithm with the SARSA. For
this experiment, the action selection policy is set to the
€ — greedy policy with e = 0.1. In our final experiment,
we explore the performance of different values of depth.
We do that by using the n-step Q-learning algorithm for
different values of n and also the Monte Carlo algorithm.
For this experiment, we use again thee — greedy policy with
€ = 0.1. The learning rate is & = 0.25, the discount rate is
~v = 1.0 and the episode length 7" is 150.

3.2. Results

For our first experiment, we are interested to find which
action selection policy achieves better results for our prob-
lem. We do that by comparing the implementation of the
€ — greedy and the Boltzmann softmax policy in the Q-

Gy=0
fort =T., —1to0do

Gy =1 +vGit1

update Q-value using Equation (6)
end for

learning tabular algorithm.

1.09

0.5 A

Reward

0.01
—— e-greedy, € = 0.02

e-greedy, € = 0.1
e-greedy, € = 0.3
softmax, T = 0.01
softmax, T = 0.1

softmax, T = 1.0

——- DP optimum

—0.5

-1.01

0 10000 20000 30000 40000 50000
Time

Figure 2. The average reward as a function of time (number of
steps) for the e — greedy and the Boltzmann softmax policy. Each
line represents a different value of the exploration parameter (e
or 7). The dashed line shows the mean reward achieved by the
dynamic programming. We see that the softmax policy for low
values of 7 managed to achieve similar results to the optimal
policy.

The results are shown in Figure 2. We explored the two
different policies by using three different values for each ex-
ploration parameter (e and 7). The values are ranging from
what are typically low values (¢ = 0.02 an 7 = 0.01) to
typically big values (¢ = 0.3 an 7 = 1.0). We also plot the
average mean reward per time step that we calculate in our
experimentation with the dynamic programming algorithm
(average(r) = 1.33).

We can see that all of the different implementations achieved
some level of learning, while some of them performed sig-
nificantly better. The softmax policy achieved better results
than the € — greedy in general. Low values of the 7 pa-
rameter lead to very similar results when compared with
the optimal policy that was learned during the dynamic
programming experimentation. The ¢ — greedy performed
well only for the lowest value of the e parameter.

From this experimentation, we can conclude that exploita-
tion is favored more than exploration in our environment.
Both policies performed significantly better for small values

Tabular Reinforcement Learning

of the exploration parameter which made our agent more
“greedy”, meaning it was more likely to choose the best
action from its current knowledge of the environment.

In our next experiment, we compare the two different ways
to calculate the back-up target. As described in Equations (5)
and (7) we can use either off-policy or on-policy to back-
up information. The first was implemented using the Q-
learning algorithm while for the latter we used the SARSA
algorithm.

- Q-learning, a =0.02 *====————————————————————-—
Q-learning, a = 0.1
Q-learning, a = 0.4
SARSA, a = 0.02
SARSA, a = 0.1
SARSA, a = 0.4

DP optimum

1.09

0.5 A

Reward

0.0 A

—0.51

-1.04

0 10000 20000 30000 40000 50000
Time

Figure 3. Comparing the rewards over time for the on-policy and
off-policy. The Q-learning calculates the back-up using off-policy
while the SARSA uses on-policy. For both implementations, we
experimented with different values of the learning rate (o). We
see that for the same values of the learning rate, Q-learning outper-
forms the SARSA, while neither of them managed to achieve the
mean reward of the optimal policy of the dynamic programming
(dashed line).

In Figure 3 we can compare the two different policies for
different values of the learning rate. As we can notice for
each different value of the learning rate the Q-learning al-
gorithm outperforms SARSA. It also becomes clear that
neither of these algorithms reached the optimum that was
set during the implementation of the dynamic programming
algorithm.

From that, we conclude that off-policy performs better in
our environment. This is not a surprise since in our previous
experiment we found that “greedy” actions also performed
better. Off-policy also exploits those “greedy” actions as
it uses the best possible action at the next state to update
the Q-values while on-policy uses the actual action that was
taken, which may include exploration, which seems to not
be favored as much in our environment.

Off-policy can typically learn the optimal policy because
it has a lower bias than the on-policy. On the other hand,

on-policy is more stable since it has a lower variance. This
is one typical example of the bias-variance tradeoff. One
possible explanation as to why off-policy performs better
can come out of this if we assume our environment is more
stable and is therefore more rewarding to lower the bias and
achieve a more optimal policy.

For our final experiment, we compare how the different
values of depth perform in our n-step Q-learning algorithm.
We also compare it to the Monte Carlo algorithm that uses
no bootstrapping and updates the Q-values using all the
rewards obtained during each episode.

F—— 1l-step Q-learning ————————————————————————————
3-step Q-learning

1.04 — 10-step Q-learning

—— 30-step Q-learning

—— Monte Carlo

——- DP optimum

l/N\/\/\"\/\/\'\v

0.0 A

Reward

~0.51

-10{ . e

0 10000 20000 30000 40000 50000
Time

Figure 4. The average reward as a function of time (number of
steps) for different values of depth for the n-step Q-learning algo-
rithm, as well as the Monte Carlo algorithm. Monte Carlo uses no
bootstrapping and is not able to learn the environment. The n-step
Q-learning algorithm performs much better for low values of depth
but is still not close to the optimum that was set from the dynamic
programming implementation (dashed line).

In Figure 4 we see the final results of our experiment. The
average reward for Monte Carlo indicates that it was not
able to learn the environment, with a small possibility that
it actually managed to achieve some results towards the
end of the learning budget. Q-learning on the other hand
achieved much better results, especially for small values
of depth. One other clear observation is that the 3-step Q-
learning algorithm achieved much better results early on
but did not reach the same level of final performance as the
1-step algorithm.

To explain all that we can see in the bias-variance trade-
off. Low depth can lead to higher bias with lower values
of variance. It is clear that this is favored in this particular
case as bigger values of depth lead to a worse final perfor-
mance. The higher bias can also explain why the 3-step
Q-learning managed to learn the environment quicker. The
bigger values of variance made it more unstable and the

Tabular Reinforcement Learning

final performance suffered as consequence.

In Appendix A we repeat the experiments we discussed in
this chapter after changing the values of various parameters,
in order to achieve higher performance.

4. Discussion

During this assignment, we experimented with many differ-
ent algorithms and tested them for different values of the
input parameters.

Dynamic programming managed to solve our problem by
finding the optimal policy that will lead our agent from the
start-state to the goal-state. It set the benchmark for all the
other model-free algorithms. The final performance of the
agent after dynamic programming was only matched by the
Q-learning algorithm using the Boltzmann softmax policy
for low values of the temperature parameter. All the other
algorithms couldn’t achieve the same level of performance.
It is however worth mentioning one more time that dynamic
programming only works in ideal situations where the agent
has access to the model of the environment and can not
be applied to many cases. This is why we have to rely on
model-free algorithms for most real-world applications.

When experimenting with different exploration policies we
discovered that for our environment exploitation was fa-
vored during training. Although exploration is essential for
our agent to learn the optimal path, big values of the explo-
ration parameter were not as successful. We also came to the
conclusion that the Boltzmann softmax policy worked better
in our world, as it is the only policy that managed to reach
the optimum that was set during the dynamic programming.

After that, we tested on-policy and off-policy learning. The
SARSA algorithm we implemented is an on-policy learning
technique as it uses the value of the action that was taken.
In contrast, Q-learning utilizes the value of the best possible
action to bootstrap and update the values. Both have advan-
tages and drawbacks. On-policy algorithms are considered
more stable (Moerland, 2021) while off-policy ones have
better performance but might be unstable. During our exper-
iments, we found that for the given environment off-policy
(Q-learning) is giving better results for the same value of
the exploration parameter. N-step Q-learning is considered
an off-policy method because it utilizes the maximum value
of the last action. However, it also sums up the rewards of
the path that was actually followed during an episode. This
means that it combines some aspects of on-policy learning
with off-policy learning.

For the next experiment, we decided to test how depth af-
fects the performance of our algorithms. One-step learning
methods (usually refer to as Temporal Difference) have low
variance which is really beneficial as it means our agent

can learn quickly. The signal however now becomes highly
biased and might not converge to an optimal policy (Ju-
liani, 2018). On the other extreme we have the Monte Carlo
algorithm that omits bootstrapping and as a result has a com-
pletely unbiased signal. It suffers however from the high
variance that comes from the stochasticity of the environ-
ment. This might lead to our agent not being able to find
the optimal path. This is the concept of the bias-variance
tradeoff. N-step algorithms are somewhere in between the
two extremes and have some levels of variance and bias in
their learning.

During our implementation, we found that low variance is
extremely beneficial to our agent learning the environment.
Monte Carlo was not able to learn anything with the same
budget and parameters as the n-step Q-learning techniques.
1-step had the best performance, while 3-step Q-learning
achieved better rewards early on but was not able to have
the same final performance.

As we have already discussed tabular reinforcement learning
techniques have many advantages. They can learn quickly
and achieve the optimal policy. They suffer however from
many limitations and drawbacks. They are not fit to deal
with continuous problems unless we can successfully dis-
cretize them. They are also computationally expensive,
especially for more complex problems that we usually find
in real-world applications. As the number of dimensions
of our problem increases the number of parameters in the
table increases exponentially. Even simple problems in high-
dimension space will become impossible to solve as tabular
reinforcement learning will become impractical in terms of
storage requirements and computation time. This concept is
described as the “curse of dimensionality.

To solve these issues we resort to deep reinforcement learn-
ing techniques. Deep neural networks can approximate the
value function, which can scale to very large state-action
spaces. They can also work with continuous signals without
the need to discretize the state-action space.

A. Extra experimentation

During our initial experiments in Section 3 we learned some
valuable information for the optimal values of the differ-
ent parameters. Parameter tuning is a very delicate process
and requires lots of experimentation. In this appendix, we
attempt to use what we learned in order to achieve the opti-
mum results that were set during the dynamic programming
(Section 2).

In our experiment for the best selection action policy, we
found that the Boltzmann softmax policy was able to achieve
a performance that was similar to the optimum for low
values of the temperature parameter. The € — greedy policy
was also able to achieve good results when exploitation was

Tabular Reinforcement Learning

1.04

0.54

Reward

0.0

—— é&-greedy, € = 0.02

e-greedy, € = 0.01
—— &-greedy, € = 0.005
—— ¢&-greedy, € = 0.01
=== DP optimum

-0.51

—1.04

T T T T T T
0 10000 20000 30000 40000 50000
Time

Figure 5. The average reward as a function of time (number of
steps) for the € — greedy policy. Each line represents a different
value of the exploration parameter (¢). The dashed line shows
the mean reward achieved by the dynamic programming. We see
that the e — greedy policy for low values of € managed to achieve
similar results to the optimal policy.

favored, so we decided to test whether further decreasing
the € parameter will lead to better performance.

1.04

—— Q-learning, a = 0.02
Q-learning, @ = 0.1
—— Q-learning, a = 0.4
—— SARSA, a = 0.02
—— SARSA, a = 0.1
—— SARSA, a = 0.4
=== DP optimum

0.54

Reward

0.0

-0.51

~1.04

T T T T T T
0 10000 20000 30000 40000 50000
Time

Figure 6. Comparing the rewards over time for the on-policy and
off-policy. The Q-learning calculates the back-up using off-policy
while the SARSA uses on-policy. For both implementations, we
experimented with different values of the learning rate (o). Both
implementations now use a softmax action selection policy with
7 = 0.1. We see that Q-learning outperforms the SARSA. Q-
learning is capable of reaching the optimum (dashed line) within
budget for big values of a.

As we can see in Figure 5 this is indeed the case. The
best performance for € = 0.05 is very close to the optimal
policy achieved during the dynamic programming. Further
reducing the exploration parameter does not yield better

results. It becomes even more evident that “greediness” is
favored in our environment, as both ¢ — greedy and softmax
policies were able to converge to the optimal policy for small
values of their respective exploration parameters.

In our next two experiments, we tested the way we back-up
information as well as the depth of the target. The testing
was done while using a sub-optimal action selection policy
(e — greedy policy for e = 0.1). We decided to conduct
the same experiments but this time we chose a policy that
we know it can lead to the optimal policy, the Boltzmann
softmax policy for 7 = 0.1.

1.0

0.5{ — 1l-step Q-learning
3-step Q-learning

—— 10-step Q-learning

—— 30-step Q-learning

—— Monte Carlo

=== DP optimum

Reward

0.0 4

-0.51

-1.01 /J\

0 10000 20000 30000 40000 50000
Time

Figure 7. The average reward as a function of time (number of
steps) for different values of depth for the n-step Q-learning algo-
rithm, as well as the Monte Carlo algorithm. In this implemen-
tation, we use the Boltzmann softmax policy for 7 = 0.1. The
optimum that was set from the dynamic programming implemen-
tation is shown with a dashed line. The 1-step algorithm achieved
better results while high-depth algorithms were not able to learn.

The results of the new on-policy vs off-policy experiment
are shown in Figure 6. As we can see contrary to the initial
experiment we were able to reach the optimum within our
budget. The off-policy Q-learning algorithm was once more
the best-performing out of the two. It is also more clear that
bigger values of learning rate can lead to faster convergence
and they have no issue with stability in our environment.

The results for our new depth experiment are shown in Fig-
ure 7. The 1-step Q-learning algorithm managed to achieve
higher performance when we compare it with the initial
experiment. 3-step Q-learning also achieved higher final
performance than before but took more time to converge.
This is not something unexpected as the lower levels of
exploration can lead to slower convergence. Higher-depth
algorithms suffered from this change as they were com-
pletely unable to learn the environment and achieve higher
rewards. The conclusion from all of these could be that
exploration becomes more important when we go to higher-
depth algorithms.

Tabular Reinforcement Learning

References

Andrew, A. M. Reinforcement learning: An introduction
by richard s. sutton and andrew g. barto, adaptive compu-
tation and machine learning series, mit press (bradford
book), cambridge, mass., 1998, xviii 322 pp, isbn 0-262-
19398-1, (hardback, £31.95). Robotica, 17(2):229-235,
1999. doi: 10.1017/S0263574799211174.

Juliani, A. Making sense of the bias / variance trade-off in
(deep) reinforcement learning, Feb 2018.

Moerland, T. Continuous markov decision process and
policy search. Lecture notes for the course reinforcement
learning, Leiden University, 28(71):106, 2021.

Plaat, A. Deep Reinforcement Learning, a textbook. arXiv
e-prints, art. arXiv:2201.02135, January 2022. doi: 10.
48550/arXiv.2201.02135.

